期刊文献+

Web挖掘中公民隐私权保护解决方案探讨 被引量:5

Research on the Solutions of Citizen' s Privacy Protection in Web Mining
下载PDF
导出
摘要 随着我国互联网的高速发展,数据挖掘技术尤其是Web挖掘作为企业搜寻商业信息为客户提供个性化服务的重要手段,不可避免地触到隐私保护这块"雷区"。隐私权保护在网络环境下既是法律界同时也是电子商务研究的热点话题。隐私保护限制了web挖掘数据中数据的搜集及知识的共享和传播,如何在web挖掘和隐私保护之间进行权衡是文章研究的出发点。结合我国网络隐私权保护的现状,通过对隐私权的内容及可能造成侵权形式的研究,探讨了隐私保护面临的挑战,提出了隐私权保护的解决方案框架。 With the rapid development of the internet, web mining as a business information searching method and means of dot com companies providing customers with personalized service, could not avoid touching the " minefield" piece of privacy protection. In the environment of network, privacy protection is not only a legal issue but also a hot topic in the research of electronic commerce. As privacy limits the data searching and knowledge sharing and dissemination in web mining, how to weight between web mining and privacy protection is this paper' s starting point. By researching on the content and possible harm forms of privacy and discussing the challenges privacy protection faces, this paper raises solutions for protecting privacy.
作者 赵龙文 郭静
出处 《科技管理研究》 CSSCI 北大核心 2012年第4期151-155,共5页 Science and Technology Management Research
关键词 WEB挖掘 隐私权 个人数据 解决方案 web mining privacy personal data solution
  • 相关文献

参考文献6

二级参考文献53

  • 1Abbattista F. , Degemmis M. , Fanizzi N. , et al. Learn ing User Profiles for Content - Based Filtering in e - Commerce [R]. SSRN.
  • 2Balabanovic M. and Shoham Y. , Fab: Content - Based Collaborative Recommendation. Communication of the ACM [J]. 1997,40(3):66 -72.
  • 3Bo Xiao. Izak Benbasat. E -Commerce Product Recommendation Agents: Use, Characteristics, and Impact[J]. MIS Quarterly, 2007,31 ( 1 ) :137 -209.
  • 4Breese, J. S. , Heckerman, D. , & Kadie, C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering [ C]. Proceedings of the 14th Conference on Uncertainly in Artificial Intelligence, 1998. 43 C52.
  • 5Byron L.D. Bezerra, Francisco de A.T. de Carvalho. A Symbolic Approach for Content - based Information Filtering [ J ]. Information Processing Letters,2004, (92) :45 - 52.
  • 6CHEN Jian, YIN Jian, HUANG Jin. Automatic Content - Based Recommendation in e -Commerce [ C ]. 2005 Ieee International Conference on e - Technology, e - Commerce and e - Service ( EEE' 05 ) ,2005. 748 - 753.
  • 7D. Billsus and M. J. Pazzani. Learning Collaborative Information Filters. Proceedings of the Fifteenth International Conference on Machine Learning[ C]. Madison, WI, 1998. Morgan Kaufman.
  • 8Dan Ariely. John G. Lynch, Jr. Manuel Aparicio IV. Learning by Collaborative and Individual- Based Recommendation Agents [ R ]. SSRN, 2007.
  • 9Daniel Fleder. Kartik Hosanagar. Blockbuster Culture' s Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity[ R]. SSRN, JUNE, 2007.
  • 10Diehl, K., Kornish, L. J., and Lynch, J. G. Smart Agents: When Lower Search Costs for Quality Information Increase Price Sensitivity [ J]. Journal of Consumer Research,2003,30( 1 ) :56 -71.

共引文献423

同被引文献57

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部