期刊文献+

基于SCI/ERA方法的高效气动力降阶模型 被引量:2

Efficient aero-dynamic reduced-order-model based on SCI/ERA method
下载PDF
导出
摘要 由正交Walsh函数构造Walsh-单信号-复合-输入,对其作用下的计算流体力学响应采用单信号-复合-输入/特征系统实现算法SCI/ERA(Single-Composite-Input/Eigensystem Realization Algorithm)辨识得到离散时间非定常气动力状态空间降阶模型。通过对Isogai机翼剖面气动弹性算例的计算证明该方法具有和非定常计算流体力学方法相当的精度同时模型维数降低2个数量级;在模型构造时间上,SCI/ERA方法比脉冲/ERA方法计算效率提高24%,同时内存占用减小34%;由理论分析可知当耦合结构模态数目增加时,SCI/ERA方法所需的计算开销增幅远小于脉冲/ERA方法;采用频域平衡特征正交分解BPOD(Balanced Proper Orthogonal Decomposition)方法可以准确地从降阶模型中提取出一个低频二次降阶模型,同时保持与原模型相当的精度。二次降阶后模型维数进一步减小88%。 The Walsh-single-composite-input signals based on orthogonal Walsh function were simultaneously inputted into the CFD(Computational Fluid Dynamics) model,using SCI/ERA(Single-Composite- Input/Eigensystem Realization Algorithm) to identify a discrete-time-domain,unsteady aero-dynamic reduced-order-model(ROM) in state space formulation from CFD responses directly. The Isogai wing stand aeroelastic example was computed, and the results demonstrate that the SCI/ERA method decreases model's dimension in 2 orders while still maintains the same accuracy of unsteady CFD codes. Compared to Pulse/ERA method,it improves the computational efficiency by 24% and saves memory space by a4 %. Besides, the SCI/ERA method needs much less additional computational resources than Pulse/ERA method while increasing the coupled structure modes. The frequency-domain BPOD(Balanced Proper Orthogonal Decomposition) method can extract a low frequency second-reduced-order-model(SROM) from ROM while remains the same accuracy. The dimension of ROM further decreases by 88% after second order reduction.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2012年第1期19-24,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金-重大研究计划(90816008)资助项目
关键词 降阶模型 单信号-复合-输入/特征系统实现算法 平衡特征正交分解 二次降阶 reduced-order-model SCI/ERA BPOD second order reduction
  • 相关文献

参考文献12

  • 1Lucia D J,Beran P S,Silva W A. Reduced-order mod- eling..new approaches for computational physics[J]. Progress in Aerospace Sciences, 2004,40 : 51-117.
  • 2Silva W A. Reduced-order models based on linear and nonlinear aerodynamic impluse response[A]. AIAA- 99-1262. Hampton, VA, United States: CEAS/AIAA/ ICASE/NASA International Form on Aeroelasticity and Structural Dynarnics[C]. 1999.
  • 3Silva W A,Raveh D E. Development of unsteady aer- odynamic state-space models from CFD-based pulse response[A]. AIAA-2001-1213, Seattle, WA, United States.. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit,42th[C]. 2011.
  • 4Silva W A, Bartels R E. Development of reduced-or- der models for aeroelastic analysis and flutter predic- tion using the CFD3Dv6. 0 code[A]. AIAA 2002- 1596. Denver, CO, United States: AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics and Metroals Conference,43th[C]. 2002.
  • 5Silva W A. Simultaneous excitation of multiple-input multiple-output CFD-based unsteady aerodynamic systems[J]. Journal of Aircraft, 2008,45 (4) : 1267- 1274.
  • 6Kim T. Efficient reduced-order system identification for linear systems with multiple inputs [J]. AIAA Journal, 2005,437 : 1455-1464.
  • 7Kim T, Hong M, Bhatia K G, SenGupta G. Aeroelas- tic model reduction for affordable computational fluid dynamics-based flutter analysis[J]. AIAA Journal, 2005,43(12) : 2487-2495.
  • 8Ljung L. System Identification : Theory for the User [M]. Prentice-Hall Publishers, 1999.
  • 9Cowan T J, Arena A S. Development of a discrete- time aerodynamic model for CFD-based aeroelastic a-nalysis[A]. AIAA-99-0765, Reno, CA, United States : Proceedings of the Aerospace Sciences Meeting and Exhibit, 37th[C]. 1999.
  • 10Willcox K,Peraire J. Balanced model reduction via the proper orthogonal decomposition[J]. AIAA Journal, 2002,40(11) :2323-2330.

同被引文献19

  • 1赵养正,刘前智,廖明夫.非均匀栅距对压气机叶片非定常气动力的影响[J].推进技术,2007,28(2):167-169. 被引量:12
  • 2Lucia D J,Beran P S,Silva W A. Reduced-order mod- eling: new approaches for computational physics[J]. Progress in Aerospace Sciences, 2004,40(1) .. 51-117.
  • 3Silva W A, Barrels R E. Development of Reduced- order Models for Aeroelastic Analysis and Flutter Prediction using the cfl3dv6.0 CodeER]. AIAA 2002- 1596.
  • 4Dowell E H, Thomas J P, Hall K C. Transonic limit cycle oscillation analysis using reduced order modal aerodynamic models [A. Presented at the 42na AIAA/ASCE/AHS/ASC Structures, Structural Dy- namics and Materials ConferenceI-CS. Bellvue, WA, April, 2001.
  • 5Brebbia C A, Dominguez J. Boundary Elements, an Introductory Course [ M-]. Southampton: Computa- tional Mechanics Inc, 1992,20-300.
  • 6Shahverdia H, Nobaria A S, Behbahani-nejad M. An efficient reduced-order modelling approach based on fluid eigenmodes and boundary element method[J]. Journal of Fluids and Structures, 2007,23 (1) : 143- 153.
  • 7Shahverdia H,Behbahani-nejad M,Firouz-abadi R D. Reduced-Order aerodynamic model for aeroelastic a- nalysis of complex configurations in incompressible flow[J]. Journal of Aircraft, 2007,44 (3) : 1015- 1019.
  • 8Hall K C. Eigenanalysis of unsteady flows about air- foils, cascades, and wings [JS. AIAA Journal, 1994, 32(12) ..2426-2432.
  • 9An X M,Xu M,Chen S L. An improved cfd/csd cou- pled system design and application based on bem ap- proaehl-A]. Proceedings of The Second International Conference on Modelling and Simulation I-C]. Man- chester, England, UK, May, 21-22,2009.
  • 10张伟伟,叶正寅.基于气动力降阶模型的跨音速气动弹性稳定性分析[J].计算力学学报,2007,24(6):768-772. 被引量:12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部