期刊文献+

大规模有限元系统的GPU加速计算研究 被引量:11

Solving large finite element system by GPU computation
下载PDF
导出
摘要 研究了GPU(Graphics Processing Units)计算应用于有限元方法中的总刚计算和组装、稀疏矩阵与向量乘积运算、线性方程组求解问题,并基于CUDA(Compute Unified Device Architecture)平台利用GTX295GPU进行程序实现和测试。系统总刚采用CSR(Compressed Sparse Row)压缩格式存放于GPU显存中,用单元染色方法实现总刚并行计算组装,用共轭梯度迭代法求解大规模线性方程组。对300万自由度以内的空间桁架和平面问题算例,GPU有限元计算分别获得最高9.5倍和6.5倍的计算加速比,并且加速比随系统自由度的增加而近似线性增加,GFLOP/s峰值也有近10倍的增加。 Some techniques for applying GPU(Graphics Processing Units) computation in FEM(Finite El- ement Method) were investigated in this paper, which include element stiffness matrix parallel calcula- tion and global stiffness matrix assembly method, unstructured sparse matrix-vector multiplication and large-scale linear system solving method. A FEM code was implemented by using CUDA(Compute Uni- fied Device Architecture) platform and tested on nVidia GeForce GPU device. The system stiffness ma- trix was stored in the graphics memory in CSR(Compressed Sparse Row) format,and assembled via element coloring. Conjugate gradient method was used to solve FEM linear system iteratively. For the truss and 2D examples, the GPU-based FEM code gained speedups up to 9. 5x and 6.5x, respectively. It is found that the GPU speedup values are roughly linear with system DOFs(Degree Of Freedoms),and the peak values of GFLOP/s increase approximately 10 times when comparing with those of CPU's.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2012年第1期146-152,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10672066)资助项目
关键词 GPU计算 有限元 共轭梯度法 并行计算 CUDA GPU computation finite element method conjugate gradient method parallel computation CUDA
  • 相关文献

参考文献15

  • 1史宝军,袁明武,孙树立,陈斌.基于核重构思想的配点型无网格方法的研究——一维问题[J].计算力学学报,2004,21(1):97-103. 被引量:4
  • 2袁明武,孙树立,蔡定正.一种新的墙单元[J].计算结构力学及其应用,1996,13(1):17-24. 被引量:7
  • 3黄鹏,张雄,马上,王汉奎.基于OpenMP的三维显式物质点法并行化研究[J].计算力学学报,2010,27(1):21-27. 被引量:14
  • 4nVidia Corporation. nVidia CUDA Programming Guide 3.0[R]. 2010.
  • 5Bolz J, Farmer I, Grispun E, Schroder P. Sparse ma- trix solvers on the GPU..conjugate gradients and mul- tigrid[J]. ACM Transactions on Graphics, 2003,22 : 917-924.
  • 6Goddeke D. Gpgpu Performance Tuning [R]. Teeh. Rep., University of Dortmund, Germany, http:ff www. mathematik, uni-dortmund, de/ goeddeke/ gpgpu/, 2005.
  • 7Goddeke D, Strzodka R,Turek S, Accelerating double precision FEM simulations with GPUs [A]. Proe. ASIM[C]. 2005.
  • 8Goddeke D, Strzodka R, Turek S. Performance and ac- curacy of hardware-oriented native-, emulated- and mixed precision solvers in FEM simulations[J]. In- ternational Journal of Parallel, Emergent and Dis- tributed Systems, 2007,22 : 221-256.
  • 9Goddeke D, Strzodka R, Mohd-Yusof J, McCormick P,Wobker H,Becker C,Turek S. Using GPUs to Im- prove multigrid solver performance on a Cluster[J]. International Journal of Computational Science and Engineering, 2008,4 : 36-55.
  • 10Taylor Z,Cheng M, Ourselin S. High-speed nonlinear finite element analysis for surgical simulation usinggraphics processing units[J]. IEEE Transactions on Medical Imaging, 2008,27 : 650-663.

二级参考文献36

  • 1陈万吉,李勇东.带旋转自由度的精化非协调平面四边形等参元[J].计算结构力学及其应用,1993,10(1):22-29. 被引量:29
  • 2马上,张雄,邱信明.超高速碰撞问题的三维物质点法[J].爆炸与冲击,2006,26(3):273-278. 被引量:23
  • 3HARLOW F H. The particle-in-cell computing method for fluid dynamics[J]. Methods in Computational Physics, 1963,3 : 319-343.
  • 4BRACKBILL J U, KOTHE D B, RUPPEL H M.FLIP: a low-dissipation, particle-in-cell method for fluid flow[J]. Computer Physics Communications, 1988,48:25-38.
  • 5SULSKY D, CHEN Z, SCHREYER H. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics Engineering, 1994, 118:179-196.
  • 6SULSKY D,ZHOU S, SCHREYER H. Application of a particle-in-cell method to solid mechanics [J].Computer Physics Communications, 1995, 87: 236- 252.
  • 7ZHANG X, SZE K Y, MA S. An explicit material point finite element method for hyper-velocity impact [J].International Journal for Numerical Methods in Engineering, 2006,66 : 689-706.
  • 8GUO Y, NAIRN J A. Three-dimensional dynamic fracture analysis using the material point method[J]. Computer Modeling in Engineering and Sciences, 2006,16:141-156.
  • 9SULSKY D, SCHREYER H L. Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems [J]. Computer Methods in Applied Mechanics Engineering, 1996, 139:409-429.
  • 10PARKER S G. A component-based architecture for parallel multi-physics PDE simulation [J]. Future Generation Computer Systems, 2006,22: 204-216.

共引文献22

同被引文献112

引证文献11

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部