期刊文献+

控制过程异常数据的在线检测

Online Detection of Outliers of Control Process Data
下载PDF
导出
摘要 针对传统小波方法在检测异常数据方面的不足及控制系统中过程数据的特点,提出了一种适用于工业控制系统的异常过程数据在线检测方法.此方法采用基于模型的小波分析残差的检测思想,考虑异常值对模型的影响,提出了带有反馈结构的RBF网络模型,从而有效降低了异常点对RBF网络准确性的影响,提高了网络的鲁棒性;采用隐马尔可夫模型分析小波系数,避免了检测阈值的设定.实验与应用证明了该检测算法比传统小波检测算法更适合于控制过程异常数据的检测. A new method for detecting the outliers of control process data is proposed to compensate the deficiencies of the conventional wavelet methods. A wavelet method is used to decompose the fitting error of the output and its estimate, and a RBF model with backfeed structure is developed to reduce the effect of the outliers on the precision of the RBF network, thus improving the robustness of the network. HMM is introduced into the analysis of the wavelet coefficents, which can recognize the outliers without presetting the detection threshold. Experiment and application show the validity of the proposed method.
作者 刘芳 毛志忠
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第2期173-177,共5页 Journal of Northeastern University(Natural Science)
基金 国家高技术研究发展计划项目(2007AA04Z194 2007AA041401)
关键词 异常数据检测 径向基函数 小波 隐马尔可夫模型 在线检测 过程数据 outlier detection RBF ( radial basis function) wavelet HMM ( hidden Markovmodel) online detection process data
  • 相关文献

参考文献17

  • 1Antory D. Application of a data-driven monitoring technique to diagnose air leaks in an automotive diesel engine; a case study [ J ]. Mechanical Systems and Signal Processing, 2007,21(2) :795 -808.
  • 2Wahed M A, Wahba K. Data mining based-assistant tools for physicians to diagnose diseases[C]//Proceedings of the 46th IEEE International Midwest Symposium on Circuits and Systems. Cairo; DEC, 2003:27-30.
  • 3Westenskow D. Graphic data displays to detect-diagnose-treat critical events during anesthesia [ C I // 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver, 2008:20- 24.
  • 4Samantaray D, Mandal S, Bhaduri A K. Constitutive analysis to predict high-temperature flow stress in modified 9Cr-IMo(P91) [J]. Steel Materials & Design, 2010,32 (2) :981 - 984.
  • 5Folrio E N, Lele S R, Chang Y C. Integrating AVHRR satellite data and NOAA ground observations to predict surface air temperature: a statistical approach [ J ]. International Journal of Remote Sensing, 2004, 25 ( 15 ) : 2979 - 2994.
  • 6Young P, Chotai A. Data-based mechanistic modeling, forecasting, and control [ J ]. IEEE Control Systems Magazine, 2001,21 (5) : 14 - 27.
  • 7Zhang H, Albin S L, Wagner S R. Determining statistical process control baseline periods in long historical data streams [J]. Journal of Quality Technology, 2010,42( 1 ) :21 - 35.
  • 8Miller G B, Pankov A R. Minimax control of a process in a linear uncertain-stochastic system with incomplete data [J ]. Automation and Remote Control, 2007, 68 ( 11 ) : 2042 - 2055.
  • 9Pittner S, Kamarthi S V. Feature extraction from wavelet coefficients for pattern recognition tasks [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21(1) :83 - 88.
  • 10Mallat S, Hwang W L. Singularity detection and processing with wavelets [ J ]. IEEE Transactions on Information Theory, 1992,38(2) :617 - 642.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部