摘要
文章以线性抛物型方程的弱极值原理和强极值原理为主要工具,讨论了拟线性抛物型方程β(tu)=Δu+(fx,t,u)解的泛函V(x,)t=g(u)ut+h(u)和β(tu)=Δu+(fu)解的含梯度泛函P(x,t,u,u)k=塄u2+2Z()tF(u)(F'=)f,在第三边值条件下的极大值原理。
This paper discussed the maximum principle of the functional V(x,t)=g(u)ut+h(u)of the solution βt(u)=Δu+f(x,t,u)and the gradient functional P(x,t,u,uk)=︱▽u︱2+2Z(t)F(u)(F'=f) of the solutionβt(u)=Δu+f(u)of the quasilinear parabolic equations on conditions of the third boundary value by using the weak extreme principle and strong maximum principle of linear parabolic equations.
出处
《晋城职业技术学院学报》
2012年第1期68-70,共3页
Journal of Jincheng Institute of Technology
关键词
拟线性抛物型方程
第三边值条件
极大值原理
quasilinear parabolic equation
the neumann boundary value condition
maximum principle