期刊文献+

激波控制矢量喷管流动与工作特性研究 被引量:1

Research on Structure and Performance of Shock Wave Control Vector Nozzle Flow Field
下载PDF
导出
摘要 利用数值模拟方法,研究了激波控制矢量喷管的流场结构与工作特性,分析了射流流量、外流马赫数及落压比对喷管流动和性能的影响。结果表明:随着射流流量的增大,射流对主流产生的阻碍作用增大,使得注气缝上游的高压分离区增大,上、下壁面压差增大,矢量角增大;但射流流量过大时,激波会影响下壁面的压力分布,使喷管推力矢量性能降低。外流马赫数增加使喷管出口附近及上壁面注气缝下游壁面的压力降低,因此上、下壁面的压差减小,喷管的推力矢量性能降低。随着落压比的增大,注气缝上游的分离激波位置后移,注气缝下游分离区内的相对压力降低,使上、下壁面的压差减小;另外,喷管工作状态从过膨胀状态向欠膨胀状态转变时,压差产生的推力增大,喷管的推力矢量性能降低。 The flow field and the operating characteristics of a shock wave control vectoring nozzle have been investigated with a numerical simulation method. The influence of flow, external flow Mach number and pressure ratio on nozzle has been studied. The results show that with the increase of the secondary flow, it has more interference on the mainstream, making the upstream of gas injection port with a higher pres- sure, the differential pressure between upper and lower surface raise, and thrust vector angle increases. If the secondary flow was too big, it would have an impact on the lower surface and reduce the performance. With the increase of Mach number, the pressure of nozzle exit was reduced, so did the pressure of upper sur- face. The pressure between upper and lower surface decreased, thus reducing the performance of thrust vec- tor nozzle. As the NPR increased, the separation shock in front of gas injection port moved backward, mak- ing the downstream separation of gas injection port with a lower relative pressure, so the pressure between upper and lower surface decreased, and the performance of thrust vector nozzle decreased. On the other side, the work state of nozzle changed from higher expansion to lower expansion of the state, so the thrust changed with pressure increased, and the performance of thrust vector nozzle decreased.
出处 《燃气涡轮试验与研究》 北大核心 2012年第1期29-34,8,共7页 Gas Turbine Experiment and Research
关键词 激波矢量控制 推力矢量 数值模拟 外流影响 shock vector control thrust vectoring numerical simulation external flow effects
  • 相关文献

参考文献7

  • 1Deere K A. Summary of Fluidic Thrust Vectoring Re- search Conducted at NASA Langley Research Center[R]. AIAA 2003-3800,2003.
  • 2Wing D J, Giuliano V J. Fluidic Thrust Vectoring of an Ax-isymmetric Exhaust Nozzle at Static Conditions[R]. ASME FEDSM97-3228,1997.
  • 3Dickmann D A, Lu F K. Jet in Supersonic Crossflow on a Flat Plate[R]. AIAA 2006-3451,2006.
  • 4Waithe K A, Deere K A. Experimental and Computational Investigation of Multiple Injection Ports in a Conver- gent-Divergent Nozzle for Fluidic Thrust Vectoring[R]. AIAA 2003-3802,2003.
  • 5王强,付尧明,额日其太.流体注入的轴对称矢量喷管三维流场计算[J].推进技术,2002,23(6):441-444. 被引量:15
  • 6金捷,雷金春,廖华琳,赵景芸,刘志刚.激波诱导轴对称气动矢量喷管壁面静压分布的试验[J].航空动力学报,2007,22(10):1700-1703. 被引量:11
  • 7Deere K A. Computational Investigation of the Aerodynam- ic Effects on Fluidic Thrust Vectoring[R]. AIAA 2000-3598,2000.

二级参考文献12

  • 1[1]Gridley M C, Walker S H. Inlet and nozzle technology for 21st century fighter aircraft[R].ASME 96-GT-244.
  • 2[2]Chiarelli C, Johnson R, Shieh C, et al. Fluidic scale model multi-plane thrust vector control test results[R].AIAA 93-2433.
  • 3[3]Giuliano V J, Wing D J. Static investigation of a fixed-aperture exhaust nozzle employing fluidic injection for multiaxis thrust vector control[R]. AIAA 97-3149.
  • 4[4]Anderson C J, Giuliano V J, Wing D J. Investigation of hybrid fluidic/mechanical thrust vectoring for fixed exit exhaust nozzles[R].AIAA 97-3148.
  • 5[5]Wing D J, Giuliano V J. Fluidic thrust vectoring of an axisymmetric exhaust nozzle at static condition[R].1997 ASME Fluidics Engineering Summer Meeting, FEDSM 97-3228.
  • 6[6]Hamed A, Laskowski G. A parametric study of slot injection thrust vectoring in a 2DCD nozzle[R].AIAA 97-3154.
  • 7[7]Roe P L. Approximate riemann solvers, parameter vectors and difference schemes[J].Journal of Comp. Phys., 1981,43:357~372.
  • 8[8]Baldwin B S, Lomax H. Thin layer approximation and algebraic model for separate turbulent flows[R].AIAA 78-0257.
  • 9Miller D N,Catt J A.Conceptual developmentof fixed-geometry nozzles using fluidic injection for throat area control[R].AIAA95-2603.
  • 10Anderson C J,Giuliano V J,Wing D J,et al.Investigation of hybrid fluidic/mechanical thrust vectoring for fixed-exit exhaust nozzles[R].AIAA97-3148.

共引文献23

同被引文献10

  • 1罗静,王强,额日其太.两种流体控制方案矢量喷管内流场计算及分析[J].北京航空航天大学学报,2004,30(7):597-601. 被引量:17
  • 2Kowal H J. Advances in thrust vectoring and the application of flow-control technology [ J ]. Canadian Aeronautics and Space Journal,2002,48( 1 ) :145-151.
  • 3Waithe K A, Deere K A. Experimental and computational investi- gation of multiple injection ports in a convergent-divergent nozzle for fluidic thrust vectoring [ R]. AIAA-2003-3802,2003.
  • 4Deere K A. Summary of fluidic thrust vectoring research conduc- ted at nasa langley research center [ R]. AIAA-2003-3800,2003.
  • 5Beresh S J, Henfling J F, Erven R J, et al. Stereoscopic piv tor crossplane vorticity measurement of a supersonic jet in subsonic compressible crossflow [ R ]. AIAA-2004-2181,2004.
  • 6Deskman D A, Lu F K. Jet in supersonic crossflow on a flat plate [ R]. AIAA-2006-3451.2006.
  • 7Forlitil D J,Echavarria D I. Thrust vector control using trans- verse injection and countercurrent shear [ R ]. A1AA-2008- 3879,2008.
  • 8Sadiq M. Performance analysis and flowfield characterization of secondary injection thrust vector control for 2DCD nozzle [ D ]. Los Angeles : Master of Science ( Astronautical Engineering) , U- niversity of Southern California,2007.
  • 9王永华,李本威,蒋科艺.加装推力矢量喷管对飞机起飞性能影响研究[J].海军航空工程学院学报,2008,23(6):626-628. 被引量:4
  • 10曲东才.推力矢量控制技术发展及关键技术分析[J].航空科学技术,2002(3):30-33. 被引量:7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部