期刊文献+

基于云计算的数据流系综分类算法研究 被引量:1

Study on an Ensemble Classification Algorithm for Data Streams with Cloud Computing
下载PDF
导出
摘要 综合分析了数据流分类算法以及云计算的基本理论,提出了基于Hadoop框架的数据流系综分类算法,算法采用MapReduce并行编程模型对传统基于动态权重系综模型进行改进,以提升算法的分类效率.分析结果表明,该算法在处理快速海量到达的数据流时,其执行效率远高于传统系综算法. According to comprehensive analysis on data streams classification algorithms and the basic theory of cloud computing,it is proposed an ensemble classification algorithm for data streams running on Hadoop framework,and it takes MapReduce parallel programming model to improve traditional dynamic weight-based ensemble,finally speed up classification efficiency.Results show that the algorithm for high speed massive data stream has much better running efficiency than traditional ensemble algorithm.
作者 钱琳 秦亮曦
出处 《微电子学与计算机》 CSCD 北大核心 2012年第2期99-102,共4页 Microelectronics & Computer
基金 "十一五"国家科技支撑计划课题(2009BAH53B03)
关键词 云计算 数据流 系综分类 MAPREDUCE cloud computing data streams ensemble classification MapReduce
  • 相关文献

参考文献4

  • 1程转流,胡为成,胡学钢.基于DSFCI-tree的分布式数据流频繁闭合模式挖掘[J].微电子学与计算机,2007,24(9):120-122. 被引量:2
  • 2White T. Hadoop, the definitive guide [M]. O'Reilly Media, Inc, 2009.
  • 3Dean J, Ghemawat S. MapReduce: simplified data pro- cessing on large clusters. [C]//Proc of the 6th Sympo- sium on Operating Systems Design and Implementa- tiorL San Francisco: Google Inc, 2004.
  • 4Wang H, Fan W, Yu P S, et al. Mining concept-drif- ting data streams using ensemble classifiers. [C] Pro- ceedings of the 9th ACM SIGKDD International Con- ference on Knowledge Discovery and Data Mining. Washington D C, USA: ACM, 2003 : 226-235.

二级参考文献5

  • 1Giannella C,Han J,Pei J,et al.Mining frequent patterns in data streams at multiple time granularities[A].Next Generation Data Mining[C].Cambridge,Mass:MIT Press,2003
  • 2Arasu A,Manku G S.Approximate counts and quantiles over sliding windows[A].In:Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems[C].Paris,France:ACM Press,2004
  • 3Pasquier N,Bastide Y,Taouil R,et al.Discovering frequent closed itemsets for association rules[A].Proc of the 17th Int'l Conf on Database Theory[C].Berlin:Springer-Verlag,1999
  • 4M J Zaki,C J Hsiao,CHARM:An efficient algorithm for closed itemset mining[A].Proc of the 2nd SIAM Int'l Conf on Data Mining[C].Arlington:SIAM,2002
  • 5刘君强,孙晓莹,庄越挺,潘云鹤.挖掘闭合模式的高性能算法[J].软件学报,2004,15(1):94-102. 被引量:19

共引文献1

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部