期刊文献+

基于变分方法的超分辨率

A Super-Resolution Algorithm Based on Total Variation
下载PDF
导出
摘要 基于全变分先验和变分分布.提出一个新颖的超分辨率算法,使用分级的贝叶斯框架,能够同时计算出重建的高分辨率图像和模型参数.本算法利用变分推论给出变量的后验分布近似.因为能够同时估计出模型参数,是自动的过程,无需对参数人工调节.实验结果表明所提算法在重建质量上优于当前主流的算法. a novel algorithm for super resolution based on total variation prior and variational distribution approximations is proposed in this paper.We formulate the problem using a hierarchical Bayesian model where the reconstructed high resolution image and the model parameters are estimated simultaneously from the low resolution observations.The algorithm resulting from this formulation utilized variational inference and provides approximations to the posterior distributions of the latent variables.Due to the simultaneous parameter estimation,the algorithm is fully automated so parameter tuning is not required.Experimental results show that the proposed algorithm outperforms some of the state-of-the-art super resolution algorithms.
作者 刘刚 胡臻龙
出处 《微电子学与计算机》 CSCD 北大核心 2012年第2期159-162,共4页 Microelectronics & Computer
基金 国家"八六三"高科技资助项目(7150080050)
关键词 超分辨率 全变分 参数估计 贝叶斯方法 super-resolution total variation parameter estimation Bayesian model
  • 相关文献

参考文献10

  • 1Katsaggelos A K, Molina R. Super Resolution of Ima- ges and Video. Margan and Claypool,2007.
  • 2Ng M K, Shen H. A total variation regularization based super-resolution reconstruction algorithm for digital video [J]. EURASIP Journal on Advances in Signal Processing, 2007. 74585.
  • 3Chan T F, Ng N. Superresolution image reconstruc tion using l'ast inpainting algorithms [J]. Applied and Computational Harmonic Analysis, 2007,23( 1 ) : 3-24.
  • 4Farsiu S, Robinson M D. Fast and robust multitrame superresolution[J]. IEEE Trans. Image Processing. 10,2004,Vol. 13,no. 10,pp. 1327-1344.
  • 5朱福珍,李金宗,朱兵,李冬冬,杨学峰.基于径向基函数神经网络的超分辨率图像重建[J].光学精密工程,2010,18(6):1444-1451. 被引量:21
  • 6Bioucas-Dias J, Figueiredo M. Adaptive Bayesian/to- tal variation image deconvolution: A majorization mim- imization approach. EUSIPCO,2006.
  • 7Elad M, Hel-Or Y. A fast super-resolution recon- struction algorithm for pure translational motion and common space-invariant blur[J]. 1EEE Trans Image Processing, 2001,10(8) : 1187-1193,.
  • 8陈浩,王延杰.基于小波变换的图像融合技术研究[J].微电子学与计算机,2010,27(5):39-41. 被引量:30
  • 9马鲜艳.多特征融合的图形图像分类算法[J].微电子学与计算机,2009,26(6):250-252. 被引量:3
  • 10张进,王仲,李雅洁,叶声华.高精度影像测量系统中图像的超分辨率重建[J].光学精密工程,2011,19(1):168-174. 被引量:11

二级参考文献36

  • 1杜娟,余英林,谢胜利.基于半像素运动信息的快速超分辨率图像重构算法[J].华南理工大学学报(自然科学版),2005,33(5):53-58. 被引量:2
  • 2阎平凡.人工神经网络的容量、学习与计算复杂性[J].电子学报,1995,23(5):63-67. 被引量:82
  • 3刘浩一,刘明霞,孟祥增.自然纹理分类和识别方法初探[J].微电子学与计算机,2006,23(8):153-155. 被引量:8
  • 4Zolliker P, Simon K. Retaining local image information in gamut mapping algorithms[J]. IEEE Trans. Image Process., 2007, 16(3):664 - 672.
  • 5Lee K Y, Park R H, Lee S W. General chromaticity compression function for gamut mapping [ J ]. Electronic Letters, 2007, 43(5) :276- 277.
  • 6Fan Z, Bala R. Picture/graphics classification using texture features[C] // Color Imaging: Device- Independent Color, Color Hardcopy and Application Ⅶ. San Jose, CA, USA. SPIE, 2002(4663} : 81 - 85.
  • 7Canny J. A computational approach to edge detection[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1986(8) :679 - 698.
  • 8Burt P J, Adelson E H. The laplacian pyramid as a compact image code[J]. IEEE Trans. Commun., 1983,31(4) : 532 - 540.
  • 9Mallat S G. A theory for multi - resolution signal decomposition: the wavelet representation [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (7) :674 - 693.
  • 10PATTI A,SEZAN M,TEKALP A.Super-resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time[J].IEEE Trans.on Image Processing,1997,6(8):1064-1076.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部