期刊文献+

二维浅水波方程的数值激波不稳定性 被引量:1

Numerical Shock Instability for 2-D Shallow Water Equations
下载PDF
导出
摘要 研究二维浅水波方程的数值激波不稳定性问题.线性稳定性分析和数值实验表明,格式的临界稳定性与数值激波的不稳定现象有重要的联系.基于扰动量的增长矩阵分析,本文将高分辨率的数值格式和HLL格式进行特定的加权,设计一类新的混合型数值格式.其中可以调节非线性波速的HLLC与HLL的混合格式,数值试验展示了消除浅水波方程激波不稳定现象的有效性和鲁棒性. In calculation of multidimensional fluid mechanics problems with numerical schemes that accurately capture contact discontinuity, perturbation near shock wave may increase dramatically. This is called numerical shock instability. In this paper numerical shock instability on shallow water equations is studied. By analyzing linear stability of several numerical schemes, marginal stability of schemes are found having close relation with numerical shock instability. According to eigenvalue analysis, a hybrid method is designed to remedy nonphysical phenomenon by locally modify the original schemes. Numerical experiments show efficiency and robustness of HLLC-HLL hybrid scheme in eliminating shock instability of shallow water equations.
出处 《计算物理》 EI CSCD 北大核心 2012年第1期25-35,共11页 Chinese Journal of Computational Physics
基金 国家自然科学基金(11071025) 国防基础科研项目(B1520110011) 中物院科学技术发展基金(2010A0202010) 计算物理实验室基金资助项目
关键词 激波不稳定性 浅水波方程 线性稳定性分析 混合通量格式 numerical shock instability shallow water equations analysis of linear stability hybrid method
  • 相关文献

参考文献2

二级参考文献6

  • 1Bfiscoe M G, Kovitz A A. Experimental and theoretical study of the stability of plane shock waves reflected normally from perturbed flat walls[J] . Journal of Fluids Mechanics, 1968, 31(3) :529 - 546.
  • 2张树华 李曾昆.激波上小扰动衰减测量LY-12铝的高压粘性系数.爆炸与冲击,1987,7(2):159-163.
  • 3Miller G FI, Ahrens T J. Shock-wave viscosity measurement[J]. Reviews of Modern Physics, 1991, 63(4) :919 - 948.
  • 4Morduchows M. Stability of normal shock waves with viscosity and heat conduction[J]. Physics Fluids, 1971, 14(2):323- 331.
  • 5Bashkirov A G. Influence of viscous stresses on shock wave stability in gases[J]. Physics Fluids A, 1991,31(5): 960- 966.
  • 6Malik M R. Numerical methods for hypersonic boundary layer stability[J]. J of Comput Phys, 1990, 86:76 -98.

共引文献4

同被引文献17

  • 1Peery K M, Imlay S T. Blunt body flow simulationsl C ]//AIAA/SAE/ASME/ASEE 24th Joint Propulsion Conference. AIAA-88-2904, 1988.
  • 2Quirk J J. A contribution to the great Riemann solver debate E J ]- International Journal for Numerical Methods in Fluids, 1994, 18(5) : 555-574.
  • 3Liou M S. Mass flux scheme and connection to shock instability[ J]. Journal of Computation- al Physics, 2000, 160(2) : 523-548.
  • 4XU Kun. Gas-kinetic schemes for unsteady compressible flow simulations[ R]. von Karman In- stitute for Fluid Dynamics Lecture Series, 1998: 1-10.
  • 5Dumbser M, Moschetta J M, Gressier J. A matrix stability analysis of the carbuncle phenome- none J]. Journal of Computational Physics, 2004, 197(2) : 547-570.
  • 6Moschetta J M, Gressier J, Robinet J C, Casalis G. The carbuncle phenomenon: a genuine Euler instability? [ C ]//Toro E Fed. Godunov Methods: Theory and Applications, 1995 : 539- 545.
  • 7Lin H C. Dissipation addition to flux-difference splitting J 1. Journal of Computational Phys- ics, 1995, 117(1) : 20-25.
  • 8Pandolfi M, D' Ambrosio D. Numerical instabilities in upwind methods: analysis and cures for the "carbuncle" phenomenon[J]. Journal of Computational Physics, 2001, 166(2) : 271- 301.
  • 9REN Yu-xin. A robust shock-capturing scheme based on rotated Riemann solvers J. Com- puters & Fluids, 2003, 32(10): 1379-1403.
  • 10Kim S D, Lee B J, Lee H J, Jeung I S. Robust HLLC Riemann solver with weighted average flux scheme for strong shock [ J 1. Journal of Computational Physics, 2009, 228 (20) : 7534- 7542.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部