期刊文献+

基于图理论学习模型的胃窥镜图像自动标注 被引量:1

Automatic Endoscopic Image Annotation Based on Graph Learning Model
下载PDF
导出
摘要 为了解决目前医学图像检索领域不能有效缓解"语义鸿沟"的问题,提出基于图理论学习模型的图像自动标注方法.首先讨论了医学图像的标注问题,总结了现有关医学图像标注的研究工作.以胃窥镜图像为具体研究对象,针对图学习模型中的图像-标注词间的关系提取以及图像相似度计算进行了详细分析,并有效地融合进医生的诊断信息作为图像的高级语义特征,更有效地计算出图像间相似度.最后,在Toy data数据集和临床胃窥镜图像集上进行了一系列的实验,结果表明本文方法优越于传统图像标注方法. To solve the "semantic gap" problem in medical image retrieval, the paper proposed the automatic image annotation based on graph learning. It discussed the process of medical image annotation, and summarized related researchworks. Choosing endoscopic images as the object, the thesis analyzed the ectraction of the relationships between images and annotation words as well as the image similarity computation, compromised doctors' diagnostic information as the high-level semantic features of the images, which effectively calculated the image similarity. A series of experiments were conducted on Toy data and endoscopic images, the results show the method in this paoer is better than the traditional image annotation methods.
作者 王李冬
出处 《杭州师范大学学报(自然科学版)》 CAS 2012年第1期71-76,共6页 Journal of Hangzhou Normal University(Natural Science Edition)
基金 浙江省教育厅科研计划项目(Y201016245)
关键词 自动医学图像标注 图理论学习 胃窥镜图像 高级语义 automatic medical image annotation(AMIA) graph-based learning~ endoscopic image~ high-level semanticfeature
  • 相关文献

参考文献13

  • 1Agrawal R , Changhua W, Grosky W, et al. Bayesian framework for automatic image annotation using visual keywords[J]. Communications in Computer and Information Science,2010,75:142-157.
  • 2Jeon J, Lavrenko V, Manmatha R. Automatic image annotation and retrieval using cross-media relevance models[C]//Proc, of the ACM SIGIR. Toronto: ACM Press,2003:119-126.
  • 3Kang F, Jin R, Sukthankar R. Correlated label propagation with application to multi-label learning[C]//Proceedings of CVPR. New York,2006:1719 -1726.
  • 4Xiang Yu, Zhou Xiangdong, Liu Zuotao. Semantic context modeling with maximal margin Conditional Random Fields for automatic image annotation[C]//Proceedings of CVPR, San Francisco, CA, USA,2010:3368-3375.
  • 5Wang Yong, Mei Tao, Gong Shaogang, et al. Combining global, regional and contextual features for automatic image annotation[J]. Pattern Recognition, 2009,42 (2) : 259-266.
  • 6Deselaers T, Deserno T M, Muller H. Automatic medical image annotation in ImageCLEF2007: Overview, results, and discussion[J]. Pattern Recognition Letters, 2008,29 : 1988-1995.
  • 7Yao Jian, Zhang Zhongfei, Antani S, et al. Automatic medical image annotation and retrieval[J]. Neurocomputing, 2008,71 (10) :2012- 2022.
  • 8Kalpathy Cramer J, Hersh W. Automatic image modality based classification and annotation to improve medical image retrieval[J]. Study Health Technology Information, 2007,129(2) : 1334-1338.
  • 9Mueen A, Zainuddin R, Sapiyan M. Automatic multilevel medical image annotation and retrieval[J]. Journal of Digital Imaging,2010, 21(3) :208-295.
  • 10卢汉清,刘静.基于图学习的自动图像标注[J].计算机学报,2008,31(9):1629-1639. 被引量:42

二级参考文献17

  • 1Lavrenko V, Manmatha R, Jeon J. A model for learning the semantics of pictures//Proceedings of Advance in Neutral Information Processing, 2003
  • 2Feng S L, Manmatha R, Lavrenko V. Multiple Bernoulli relevance models for image and video annotation//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 2:1002-1009
  • 3Zhou D, Bousquet O, Lal T N, Weston J, Seholkopf B. Ranking on data manifolds//Proeeedings of the 18th Annual Conferenee on Neural Information Proeessing System. 2003:169-176
  • 4Zhou D, Bousquet O, Lal T N, Weston J, Scholkopf B. Learning with local and global consistency//Proceedings of the 18th Annual Conference on Neural Information Processing System. 2003:237-244
  • 5Jeon J, Lavrenko V, Manmatha R. Automatic image annotation and retrieval using cross-media relevance models//Proceedings of the 26th Annual International ACM SIGIR. 2003:119-126
  • 6Kang F, Jin R, Sukthankar R. Correlated label propagation with application to multi-label learning//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006:1719-1726
  • 7Jin Y, Khan L, Wang L. Image annotations by combining multiple evidence WordNet//Proceedings of the 13th Annual ACM International Conference on Multimedia. 2005: 706- 715
  • 8Meila M, Shi J. A random walks view of spectral segmentation//Proceedings of the 8th International Workshop on Artificial Intelligence and Statistic. 2001
  • 9Thomas H C, Leiserson Charles E, Rivest Ronald L, Stein Clifford. Introduction to Algorithms, Chapter 23: Minimum Spanning Trees. MIT Press and McGraw-Hill, 2001: 561- 579
  • 10Salton G, Buckley C. Term weighting approaches in automatic text retrieval. Information Processing and Management, 1988, 24(5): 513-523

共引文献41

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部