期刊文献+

不含特殊短圈平面图的无圈边染色 被引量:1

Acyclic edge coloring of planar graphs without cycles of specific lengths
下载PDF
导出
摘要 无圈边染色是指图G的一个正常边染色,使其不产生双色圈.研究了不含特殊短圈平面图的无圈边染色问题,证明了:如果平面图G不含4到8-圈,那么G的无圈边染色数不大于Δ(G)+1. A proper edge coloring of a graph G is called acyclic if there are no bicolored cycles in G.It was proved that every planar graph without cycles of lengths 4 to 8 was acyclic(Δ(G)+1)-edge colorable.
作者 郑丽娜
出处 《浙江师范大学学报(自然科学版)》 CAS 2012年第1期32-36,共5页 Journal of Zhejiang Normal University:Natural Sciences
关键词 平面图 无圈边染色 无圈边色数 planar graph cycle acyclic edge coloring acyclic edge chromatic number
  • 相关文献

参考文献10

  • 1Fiam6ik I. The acyclic chromatic class of a graph [ J ]. Math Slovaca, 1978 28 ( 3 ) : 139-145.
  • 2Alon N, McDiarmid C, Reed B. Acyclic coloring of graphs [ J ]. Random Structures Algorithms, 1991,2 (3) :277-288.
  • 3Molloy M, Reed B. Further algorithmic aspects of Lovtsz local lemma [ C ]//Proceedings of the 30th Annual ACM Symposium on Theory of Computing held in Dallas. Dallas : ACM, 1998:524-529.
  • 4Muthu R. N aravanan N. Subramanian C R. Imoroved bounds on acvclic edge coloring[ J ]. Discrete Math ,2007,307 (23) :3063-3069.
  • 5Alon N, Sudakov B, Zaks A. Acyclic edge colorings of graphs[ J ]. Graph Theory ,2001,37 (3) :157-167.
  • 6Alon N, Zaks A. Algorithmic aspects of acyclic edge coloring [ J ]. Algorithmica, 2002,32 ( 4 ) :611-61 g.
  • 7Cohen N, Havet F, Mtiller T. Acyclic edge-colouring of planar graphs, Extended abstract [ J ]. Eletronic Notes in Discrete Math, 2009,34 ( 5 ) : 417-421.
  • 8Sun Xiangyong, Wu Jianliang. Acyclic edge colorings of planar graphs without short cycles[ C ]//Proceedings of the 7th International Symposium on Operations Research and Its Applications held in Lijiang. Lijiang:APORC&CAS,2008:325-329.
  • 9Hou Jianfeng, Liu Guizhen, Wu Jianliang. Acyclic edge coloring of planar graphs without small cycles [ J ]. Graphs andCombinatorics, 2011 : 10. 1007/s00373-011-1043-0.
  • 10Gao Yunshu, Yu Dongxiao. Acyclic edge coloring of planar graphs without cycles of specific lengths [ J ]. Appl Math Comput, 2011,37 (2) : 533-540.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部