期刊文献+

两级式单相逆变器输入电流低频纹波分析及抑制 被引量:32

Low Frequency Input Current Ripple Analysis and Reduction in a Single Phase Inverter With Two-stage Structure
下载PDF
导出
摘要 50Hz单相逆变器时变特性导致前级直直变换器输入电流中含两倍频100 Hz低频纹波,将有可能诱发变换器之间相互作用问题,如稳定性问题、输入纹波电流限制等。基于反向电流增益Ai(s)(输入电流对输出电流)模型,提出一种新的方法,用于分析直直变换器低频纹波特性。建立不同控制方式下的Ai(s)模型,并通过SABER软件仿真得到验证。指出并验证平均电流控制方式相比电压控制方式及开环控方式,在输入电流低频纹波抑制方面更有效,并基于Ai(s)模型给出相关的设计准则。最终给出不同控制策略下输入电流低频纹波仿真及实验作为验证。 Due to the time-varying characteristic of a single phase DC/AC inverter, its front-end DC/DC converter tends to draw an ac ripple current with double output frequency, which may cause interaction issues such as stability problem and input ripple current limit. A novel method was proposed for the low frequency input current ripple analysis, based on the back current gain Ai(s) (input current to output current) model. Mathematical models with different control schemes were built and verified in SABER environment. It was indicated and proved that the average current mode control strategy is more effective than the voltage mode control and the open loop control method. Design principles were presented based on Ai(S). Simulation and experimental results with these different control schemes were provided for verification.
出处 《中国电机工程学报》 EI CSCD 北大核心 2012年第6期10-16,共7页 Proceedings of the CSEE
基金 国家重点基础研究发展计划项目(973项目)(2007CB210303)~~
关键词 逆变器 输入电流低频纹波 反向电流增益 平均电流控制 相互作用 inverters input current low frequency ripple back current gain average current mode control interaction
  • 相关文献

参考文献19

  • 1Liu C, Johnson A, Lai J S. A novel three-phase high- power soft-switched dc/dc converter for low-voltage fuel cell applications[J]. IEEE Transactions on Industry Applications, 2005, 41(6): 1691-1697.
  • 2AkagiH,WatanabeEH,AredesM.瞬时功率理论及其在电力调节中的应用[M].徐政,译.北京:机械工业出版社,2007:17.18.
  • 3吴涛,阮新波.分布式供电系统中负载变换器的输入阻抗分析[J].中国电机工程学报,2008,28(12):20-25. 被引量:30
  • 4Hu H, Harb S, Kutkut N, et al. Power decoupling techniques for micro-inverters in PV systems-a review [C]//IEEE Energy Conversion Congress and Exposition. Atlanta, GA, USA: IEEE, 2010. 3235-3340.
  • 5Itoh J I, Hayashi F. Ripple current reduction of a fuel cell for a single-phase isolated converter using a dc active filter with a center tap[C]//IEEE Applied Power Electronics Conference. Washington DC, USA.. IEEE, 2009: 1813-1818.
  • 6Cho W i, Enjeti P N, Howze J W. Development of an equivalent circuit model of a fuel cell to evaluate the effects of inverter ripple current[J]. Journal of Power Sources, 2006, 158(2): 1324-1432.
  • 7Moon S R, La J Si, Park S Y, et al. Impact of SOFC fuel cell source impedance on low frequency AC ripple[C]// IEEE Power Electronics Specialists Conference. Jeju, South Korea: IEEE, 2006: 1-6.
  • 8Schenck M, Lai J S, Stanton K. Fuel cell and power conditioning system interactions[C]//IEEE Applied Power Electronics Conference. Austin, TX, USA. IEEE, 2005: 114-120.
  • 9Fukushima K, Norigoe I, Shoyama M, et al. Input current-ripple consideration for the pulse-link dc-ac converter for fuel cells by small series LC circuit[C]// IEEE Applied Power Electronics Conference. Washington DC, USA.. IEEE, 2009: 447-451.
  • 10Liu C. A novel high-power high-efficiency three-phase phase-shift dc/de converter for fuel cell application [D]. USA.. Virginia Polytechnic Institute and State University, 2005.

二级参考文献79

共引文献92

同被引文献243

引证文献32

二级引证文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部