期刊文献+

动态朴素贝叶斯网络分类器的特征子集选择 被引量:1

FEATURE SUBSET SELECTION FOR DYNAMIC NAIVE BAYESIAN NETWORK CLASSIFIER
下载PDF
导出
摘要 分类准确性是分类器最重要的性能指标,特征子集选择是提高分类器分类准确性的一种有效方法。现有的特征子集选择方法主要针对静态分类器,缺少动态分类器特征子集选择方面的研究。首先给出具有连续属性的动态朴素贝叶斯网络分类器和动态分类准确性评价标准,在此基础上建立动态朴素贝叶斯网络分类器的特征子集选择方法,并使用真实宏观经济时序数据进行实验与分析。 Classification accuracy is the most important performance indicator of classifiers.Feature subset selection is an effective method for improving the classification accuracy of classifiers.Existing methods of feature subset selection are mainly for static classifiers,while the research on dynamic classifier feature subset selection is rare.In this paper,the dynamic nave Bayesian network classifier with continuous attributes and the accuracy evaluation criterion for dynamic classification are presented first.A selection method of feature subset of dynamic nave Bayesian network classifier is developed based on this,while the actual macroeconomic time series data are used to carry out the experiments and analyses.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第2期57-59,共3页 Computer Applications and Software
基金 国家自然科学基金(60675036) 教育部人文社科基金(09YJA630099) 上海市教委重点学科建设项目(J51702) 上海市教委科研创新重点项目(09zz202)
关键词 动态朴素贝叶斯网络 分类器 特征子集选择 高斯核函数 Dynamic nave bayesian network Classifier Feature subset selection Gaussian kernel function
  • 相关文献

参考文献1

二级参考文献23

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 2Bengio Y. Markovian models for sequential data. Neural Computing Surveys, 1999, 2:129-162.
  • 3Gu H Y, Tseng C Y, Lee L S. Isolated-utterance speech recognition using hidden Maxkov models with bounded state durations. IEEE Transactions on Signal Processing, 1991, 39(8): 1743-1752.
  • 4Levinson S E. Continuously variable duration hidden Markov models for automatic speech recognition. Computer Speech and Language, 1986, 1(1): 29-45.
  • 5Russell M J, Moore R K. Explicit modeling of state occupancy in hidden Markov models for automatic speech recognition. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Florida, USA: IEEE, 1985. 5-8.
  • 6Duong T V, Bui H H, Phung D Q, Venkatesh S. Activity recognition and abnormality detection with the switching hidden semi-Markov model. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 838-845.
  • 7Murphy K P. Dynamic Bayesian Network: Representation, Inference and Learning [Ph. D. dissertation], University of California, USA, 2002.
  • 8Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5000): 2323-2326.
  • 9Aggarwal J K, Park S. Human motion: modeling and recognition of actions and interactions. In: Proceedings of the 2nd International Symposium on 3D Data Processing, Visulization, and Transmission. Thessaloniki, Greece: IEEE, 2004. 640-647.
  • 10Pers J, Vuckovic G, Dezman B, Kovacic S. Scale-based human motion representation for action recognition. In: Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis. Rome, Italy: IEEE, 2003. 668-673.

共引文献22

同被引文献14

  • 1赵秀文,罗平,陈强,张宁.基于SSH和LDAP的分布式安全文件系统[J].计算机应用研究,2006,23(4):101-103. 被引量:4
  • 2Butler W Lampson.A note on the confinement problem[J].CommunACM,1973,16(10):613-615.
  • 3吴敬征,丁丽萍,王永吉.云计算环境下隐蔽信道关键问题研究[J].通信学报,2011,32(9A):184-203.
  • 4Sebastian Zander,Grenville Armitage,Philip Branch.A Survey of Cov-ert Channels and Countermeasures in Computer Network Protocols[J].Communications Surveys&Tutorials,IEEE,2007,9(3):44-57.
  • 5Girling C G.Covert Channels in LAN’s.Software Engineering[J].IEEE Transactions,1987,SE-13(2):292-296.
  • 6Manfred Wolf.Covert channels in LAN protocols[C].Lecture Notes in Computer Science,1989,396:89-101.
  • 7Theodore Handel,Maxwell Sandford.Hiding data in the OSI network model[J].Information Hiding,1996:23-38.
  • 8Rowland C H.Covert channels in the TCP/IP protocol suite[CP/OL].1997-05-05.http://firstmonday.org/htbin/cgiwrap/bin/ojs/in-dex.php/fm/article/viewArticle/528/449.
  • 9Serdar Cabuk,Carla E Brodley,Clay Shields.IP covert timing chan-nels:design and detection[C]//Proceedings of the11th ACM confer-ence on Computer and communications security.Washington DC,USA;ACM,2004:178-187.
  • 10Berk V,Giani A,Cybenko G,et al.Detection of covert channel enco-ding in network packet delays[R].Department of Computer Science,Dartmouth College,Technical Report TR2005536,2005.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部