期刊文献+

图聚类的算法及其在社会关系网络中的应用 被引量:16

GRAPH CLUSTERING ALGORITHM AND ITS APPLICATION IN SOCIAL NETWORK
下载PDF
导出
摘要 研究图聚类的算法问题。在基于划分的图聚类中,重点比较点与点之间距离的计算方法及其对聚类结果的影响。由于社会关系网络图中点没有坐标值,所以不能使用欧几里得距离和曼哈坦距离。使用k-medoids聚类算法时,分别采用最短距离和随机漫步距离算法,将DBLP数据集构成的社会关系网络图分类成各个子图,通过实验数据验证两种算法的优劣。实验证明最短距离算法获得聚类效果更为理想,达到了较好的分类效果。 In this paper,we study the graph clustering algorithm.In partition-based graph clustering algorithm,we particularly evaluate two different distance measures between vertices and their influence to clustering result.As the vertices in social network graphics do not have coordinates,traditional distance measures like Euclidean distance or Manhattan distance cannot be used.In this paper,we use two different distance measures based on shortest path distance and random walk distance respectively when applying the k-medoids clustering algorithm,assort the social network graphics composed of DBLP dataset into various sub-graphics,and attest the advantage and disadvantage of these two algorithms with experimental data.Experiment results demonstrate that the shortest path distance has better clustering results and achieves acceptable classification effect.
作者 温菊屏 钟勇
出处 《计算机应用与软件》 CSCD 北大核心 2012年第2期161-163,178,共4页 Computer Applications and Software
基金 广东省科技计划项目(2008B011100002)
关键词 图聚类 社会关系网络 k-medoids 最短距离算法 随机漫步距离算法 Graph clustering Social network k-medoids Shortest path distance Random walk distance
  • 相关文献

参考文献11

  • 1Venu Satuluri, Srinivasan Parthasarathy. Scalable graph clustering using stochastic flows : applications to community discovery [ C ]//KDD, Par- is, France ,2009:737 - 746.
  • 2Dongen S V. Graph Clustering by Flow Simulatiion [ D ]. Utrecht: Uni- versity of Utrecht,2000.
  • 3Shi J, Malik J. Normalized Cuts and Image Segmentation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (8) :888 -905.
  • 4Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, et al. SCAN: a structural clustering algorithm for networks [ C]//KDD. San Jose, CA, USA, 2007 : 824 - 833.
  • 5Scott J. Social Network Analysis:A Handbook [M ]. 2nd ed. London: Sage Publications Ltd,2000.
  • 6Michelle Girvan,Newman M E J. Community structure in social and bi- ological networks [ J ]. PNAS. 2002,99 ( 12 ) :7821 - 7826.
  • 7Newman M E J. Fast algorithm for detecting community structure in net- works[J], phys REVE,2004,69(6) :066133.
  • 8Filippo Radicchi, Claudio Castellano, Federico Cecconi. Defining and i- dentifying communities in networks [ C ]// Proceeding of Nail Acad. Sci ,2004,101 (9) :2658 - 2663.
  • 9palla G, Derenyi I, Farkas I. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature,2005, 435:814 -818.
  • 10郭春燕.基于连接度的图聚类方法研究[D].太原:山西大学,2008.

同被引文献151

引证文献16

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部