期刊文献+

MEMS微型质子交换膜燃料电池阳极新结构

New Anode Structure of the Micro Proton Exchange Membrane Fuel Cell Based on MEMS Technology
下载PDF
导出
摘要 利用微电子机械技术(MEMS)制备了含有4条脊的点蛇混合阳极新结构,组成自呼吸式微型燃料电池,并与老式阳极结构(含2条脊)比较。研究发现,当阳极的集流条由2增加到4时,流道总长度增大约一倍,电池的极限电流密度和峰值功率密度分别提高18.56%和15.26%,在100~500 mA恒电流放电下,可节省燃料平均达6.18%。流场的深度过深和过浅都不利于电池性能的发挥,在175μm深度时电池的效果最佳,氢气的有效利用率最高;氢气的流速对电池的性能影响不大,10~20 mL/min的流量足以保证燃料供给。 A new pin-serpentine mixed anode field plate was fabricated using silicon micro-electromechanical system(MEMS) technology.The new anode with 4 ribs and the old one with 2 ribs were assembled with cathodes to form air-breathing micro proton exchange membmne fuel cells(μPEMFC).The results showed.when the current collecting rib of anode increased from 2 to 4 the total length of anode flow field was doub led and the limiting current density and the peak power density are increased by 18.56% and 15.26%.This can save fuel by average 6.18% at discharging current of 100~500 mA.The cell performance is markedly changed with the variety of anode flow field depth,and the best performance and the greatest fuel utilization percent appear at the depth of 175 μm.The H2 flow rate has little influence on cell performance,the suitable H2 flow rate for cells is 10~20 mL/min.
出处 《化学世界》 CAS CSCD 北大核心 2012年第1期10-13,23,共5页 Chemical World
基金 国家自然科学基金项目(60936003)资助
关键词 微型质子交换膜燃料电池 阳极流场结构 燃料利用率 MEMS技术 micro proton exchange membrane fuel cell anode structure fuel utilization percent MEMS technology
  • 相关文献

参考文献15

  • 1Pierrot F, Company O. H4: A new family of 4-dof parallel robots [A]. Proceeding of the IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics[ C], 1999:508 - 513
  • 2Tlusty J, et al. Fundamental comparison of the use of serial and parallel kinematics for machine tools [ J ]. Annals of CIRP, 1999,49:351 - 356
  • 3Dasgupta B, Choudhury P. A general strategy based on the Newton-Euler approach for the dynamic formation of parallel manipulators[J]. Mechanism and Machine Theory, 1999,34
  • 4Li J F, Wang J S, et al. An efficient method for inverse dynamics of kinematically defective parallel platforms[J]. Journal of Robotic Systems, 2002,19 ( 2 ) :45 - 61
  • 5Wang J, Gosselin C M. Static balancing of spatial three-degreeof-freedom parallel mechanism[ J]. Mechanism and Machine Theory, 1999,34:437 -452
  • 6Wang J S, Liu X J. Analysis of a novel cylindrical 3-DoF parallel robot[ J]. Robotics and Autonomous Systems, 2003, 42(1) :31 -46
  • 7Chena F,Changb M H, Lin H Y,J of Power Sources [J].2008, (178): 125-131.
  • 8Muller M, Muller C, Gromball F, et al. Microsystem Technol[J].2003, (9) : 159-162.
  • 9Meyers J P, Maynard H L, Journal of Power Sources [J]. 2002, (109): 76-88.
  • 10Maynard H L, Meyers J P. J Vac Sci Technol[J].2002,B(20),1287-1297.

二级参考文献17

  • 1[1]DAVID P W. Light-weight fuel cell membrane electrode assembly with integral reactant flow passages[P].US:5 252 410,1993.
  • 2[2]CARL A R. Solid polymer electrolyte fuel cell stack water management system[P].US:4 769 297,1988.
  • 3[3]CARL A R. Water and heat management in solid polymer fuel cell stack[P].US:4 826 742,1989.
  • 4[4]MAHLOU S W. Fuel cell with metal screen flow field[P].US:5 798 187,1998.
  • 5[5]DAVID S W. Novel fuel cell fluid flow field plate[P].US:4 988 583.1991.
  • 6[6]DAVID P W. Embossed fluid flow field plate for electrochemical fuel cell[P].US:5 521 018.1996.(Ballard)
  • 7[7]DAVID P W. Methood of fabricating an embossed fluid flow field plate [P].US:5 527 363,1996.
  • 8[8]KIRK B W. Laminated fluid flow field assembly for electrochemical fuel cells[P].US:5 300 370,1994.
  • 9[9]DAVID S W. Fuel cell fluid field plate[P].US:5 108 849,1992.
  • 10[10]DAVID P W.Electrochemical fuel cell stack with concurrent flow of coolant and oxidant stream and countcurrent flow of fuel and oxidant streams[P].US:5 773 160,1998.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部