期刊文献+

近红外结合Si-ELM检测食醋品质指标 被引量:14

Measurement of quality index in vinegar using near infrared(NIR) combined with Si-ELM
下载PDF
导出
摘要 为了提高近红外光谱技术检测食醋中可溶性无盐固形物含量(SSFSC)的精度和稳定性,提出采用联合区间偏最小二乘(Si-PLS)筛选光谱特征区间,再利用极限学习机(ELM)算法建立非线性回归模型,并对该方法的优越性进行系统比较;试验通过交互验证优化模型相关参数,以预测时的相关系数(Rp)和预测均方根误差(RMSEP)作为模型的评价指标。结果表明,Si-PLS结合ELM算法(Si-ELM)所建模型最佳,预测结果:Rp=0.973 9,RMSEP=1.232g/100mL。说明利用近红外光谱技术可以快速准确检测食醋中的SSF-SC,Si-ELM的应用可以适当提高该预测模型的精度。 To address the performance of NIR predicted model in measurement of soluble salt-free solid content(SSFSC) in vinegar,synergy interval partial least square(Si-PLS) was employed to select efficient spectral regions,and then extreme learning machine(ELM) algorithm was employed to develop the non-linear regression model.The relevant parameters of the model were optimized by cross-validation.The performance of the model was evaluated according to the correlation coefficient(Rp)and root mean square error of prediction(RMSEP) in prediction set.Experimental results showed that the model based on Si-PLS and ELM(i.e.Si-ELM model) was superior to others,and the optimum results were achieved as follows:Rp=0.973 9,RMSEP = 1.232 g/100 mL.The work demonstrated that NIR spectroscopy can be applied in rapid measurement of SSFSC in vinegar,and Si-PLS and ELM algorithms has the potentials in increasing the performance of NIR prediction model.
出处 《食品与机械》 CSCD 北大核心 2012年第1期93-96,共4页 Food and Machinery
基金 博士后特别资助项目(编号:201003559)
关键词 近红外光谱 联合区间偏最小二乘法 极限学习机 食醋 可溶性无盐固形物含量 NIR spectroscopy synergy interval PLS(Si-PLS) extreme learning machine(ELM) vinegar soluble salt-free solid content(SSFSC)
  • 相关文献

参考文献3

二级参考文献33

  • 1陈洁梅,潘涛,陈星旦.二阶导数光谱预处理在用FTIR/ATR方法定量测定葡萄糖-6-磷酸和果糖-6-磷酸中的应用[J].光学精密工程,2006,14(1):1-7. 被引量:28
  • 2陈华才,吕进,陈星旦,刘辉军.基于径向基函数网络的茶多酚总儿茶素近红外光谱检测模型的研究[J].光学精密工程,2006,14(1):58-62. 被引量:28
  • 3单敬福,纪友亮,柳成志.改进人工神经网络原理对储层渗透率的预测——以北部湾盆地涠西南凹陷为例[J].石油与天然气地质,2007,28(1):106-109. 被引量:15
  • 4CHEN Q SH, ZHAO J W, ZHANG H D, etal.. Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration [J]. Analytica Chimica Acta, 2006,572(1) :77-84.
  • 5CHEN Q SH, ZHAO J W, HUANG X Y, etal.. Simultaneous determination of total polyphenols and caffeine contents of green tea by near-infrared reflectance spectroscopy[J]. Microchemical Journal, 2006,83(1) :42-47.
  • 6LUYPAERT J, ZHANG M H, MASSART D L. Feasibility study for the use of near infrared spectroscopy in the qualitative and quantitative analysis of green tea, Camellia sinensis (L.)[J]. Analytica Chimica Acta ,2003,478(2) :303-312.
  • 7SCHULZ H, JOUBERT E, SCHUTZE W. Quantification of quality parameters for reliable evaluation of green rooibos ( Aspalathus linearis) [J]. Eur. Food Res. Technol. , 2003,216(6) :539-543.
  • 8NORGAARD L, SAUDLAND A, WAGNER J Interval Partial Least Squares Regression (iPLS) : a comparative chemometric study with an example from near-infrared spectroscopy[J]. Applied Spectroscopy ,2000,54:413-419.
  • 9LEARDI R, NORGAARD L. Sequential application of backward interval PLS and genetic algorithms for the selection of relevant spectral regions[J]. Journal of Chemometrics, 2004,18 ( 1 ] ) ; 486-497.
  • 10CHEN Q SH, ZHAO J W, LIU M H, etal.. Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms [J]. Journal of Pharmaceutical and Biomedical Analysis, 2008,46 : 568- 573.

共引文献97

同被引文献196

引证文献14

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部