期刊文献+

高阶模糊地理现象建模和度量研究 被引量:1

Modeling and Metrics of Higher Order Fuzzy Geographical Phenomena
下载PDF
导出
摘要 模糊地理现象的建模和度量方法已经取得一些进展,但是现有的模型不能度量隶属度的误差,不足以客观描述复杂的模糊地理现象。认为尺度效应和测量误差是客观上引起模糊地理现象隶属度误差的主要方面,相关人员的主观性和部门间标准的差异性是主观上引起隶属度误差的主要方面。基于区间Ⅱ-型模糊集理论建立模糊地理对象模型,研究区间Ⅱ-型模糊线长度、区间Ⅱ-型模糊面面积的度量方法和它们隶属度误差的度量方法。该模型能表达隶属度误差,克服现有模型的诸多缺陷。在自然灾害分析、全球变化和植被变化等方面有良好的应用前景。 Modeling and metrics of fuzzy geographical phenomena have gained some products.But existing models can't measure the error of membership value,so those models can't satisfy to objectively describe complex natural and artificial phenomena.The scale effect and measurement error are two major objective reasons which bring forth the membership error of vague geographical phenomena while subjectivity of relative workers and difference of standards between departments are major subjective reasons.A fuzzy geographical object model is proposed based on interval type-Ⅱ fuzzy sets,and the metrics of length of interval type-Ⅱ fuzzy line and area of interval type-Ⅱ fuzzy region are developed too,then the membership error of interval type-Ⅱ fuzzy geographical object is analyzed.This model can handle uncertainty of membership value and avoid some limitations of existing models.The model and relative metrics methods have broad applications in natural hazard analysis,global change,land cover change and so on.
出处 《测绘学报》 EI CSCD 北大核心 2012年第1期139-146,共8页 Acta Geodaetica et Cartographica Sinica
基金 国家科技支撑计划(2008BAK50B01) 国家自然科学基金(41101352) 天津师范大学博士基金(52XB1008) 天津师范大学空间信息服务重点实验室基金(53H10070)
关键词 多尺度 高阶模糊性 区间Ⅱ-型模糊集 不确定性 度量 multi-scale higher order vagueness interval type-Ⅱfuzzy set uncertainty metrics
  • 相关文献

参考文献26

  • 1BURROUGH P A, FRANK A U, et al. Geographic Objects with Indeterminate Boundaries [M]. London: Taylor and Francis, 1996.
  • 2DILO A. Representation of and Reasoning with Vagueness in Spatial Information: a System for Handling Vague Objects [D]. Enschede: ITC,2006.
  • 3CLEMENTINI E, FELICE P. A Spatial Model for Complex Objects with a Broad Boundary Supporting Queries on Uncertain Data [ J]. Data and Knowledge Engineering, 2001,37 : 285-305.
  • 4刘文宝,邓敏,易彤.矢量GIS中模糊地理边界的分析[J].山东科技大学学报(自然科学版),2000,19(1):28-32. 被引量:4
  • 5SUNILAL R, LAINE E, KREMENOVA O. Fuzzy Model and Kriging for Imprecise Soil Polygon Boundaries [C] // Proceedings of 1st International Conference on Advances in Mineral Resources Management and Enviromental Geotech nology. Hania: Es. n. 1,2004.
  • 6BEJAOUI L, P1NET F, BEDARD Y,et al. Qualified Topological Relations between Spatial Objects with Possible Vague Shape [J]. International Journal of Geographical Information Science, 2009,23 (7) : 877-921.
  • 7TANG Xinming. Spatial Object Modeling in Fuzzy Topolo gical Spaces with Applications to Land Cover Change [D]. Wageningen: University of Twente, 2004.
  • 8LIU K, SHI Wenzhong. Quantitative Fuzzy TopologicalRelations of Spatial Objects by Induced Fuzzy Topology [J]. International ' Journal of Applied Earth Observation and Geoinformation, 2009, 11(1): 38-45.
  • 9何建华,刘耀林,俞艳,唐新明.基于模糊贴近度分析的不确定拓扑关系表达模型[J].测绘学报,2008,37(2):212-216. 被引量:7
  • 10邓敏,李志林,程涛.多粒度的GIS数据不确定性粗集表达[J].测绘学报,2006,35(1):64-70. 被引量:18

二级参考文献132

共引文献50

同被引文献12

  • 1Clementini E, di Felice P. Approximate Topological Relations[J]. International Journal of Approxi- mate Reasoning, 1997, 16 : 173-204.
  • 2Bejaoui L, Pinet F, Bedard Y, et al. Qualified To- pological Relations Between Spatial Objects with Possible Vague Shape[J]. International Journal of Geographical Information Science, 2009, 23 (7) : 877-921.
  • 3Warren R H. Boundary of a Fuzzy Set[J] Indiana University Mathematics Journal, 1977, 26: 191- 197.
  • 4Tang Xinming. Spatial Object Modeling in Fuzzy Topological Spaces with Applications to Land Cover Change[D]. Nijmegen, The Netherlands: Radboud University, 2004.
  • 5Liu Kimfung, Shi Wenzhong. Computing the Fuzzy Topological Relations of Spatial Objects Based on Induced Fuzzy Topology[J]. International Journal of Geographica[ Information Science, 2006, 20 (8) : 857-883.
  • 6Bj:rke J. T. Topological Relations Between FuzzyRegions: Derivation of Verbal Terms[J]. Fuzzy Sets and Systems, 2004, 141:449-467.
  • 7Zadeh L A. The Concept of a Linguistic Variable and Its Application to Approximate Reasoning[J]. Information Sciences, 1975, 8 : 199-249.
  • 8Fisher P, Cheng T, Wood J. Higher Order Vague- ness in Geographical Information: Empirical Geo- graphical Population of Type-H Fuzzy Sets [J]. Geoinformatica, 2007,11 : 311-330.
  • 9Guo Jifa, Cui Tiejun. Discussion on Type-I Fuzzy Boundary and Research on Boundary Definition ofHigh Order Fuzzy Region[J]. Telkomnika Indone- sian Journal of Electrical Engineering, 2012, 10 (6) : 1207 -1213.
  • 10Zeng Wenyi, Guo Ping. Normalized Distance, Simi- larity Measure, Inclusion Measure and Entropy of Interval-valued Fuzzy Sets and Their Relationship [J]. Information Sciences,2008, 178:1 334-1 342.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部