期刊文献+

一类吸血鬼模型的稳定性分析

Analysis of Stability for a Class of Virus Models with Latency
下载PDF
导出
摘要 本文建立了一类吸血鬼数学模型,定义了模型的基本再生数,通过构造适当的Lyapunov函数来研究模型解的渐近性态.证明了当基本再生数小于1时,无病平衡点是全局渐近稳定的;当基本再生数大于1时,唯一的地方病平衡点是全局渐近稳定的. This paper discusses a class of virus model with latency.The basic reproduction number of the virus model is defined by applying the next generation matrix method.The asymptotic behavior of the solutions of the virus model is investigated by constructing proper Lyapunov functions.It is proved that if the basic reproduction number is lower than one,the unique disease-free equilibrium is globally asymptotically stable;if the basic reproduction number is above one,the disease-free equilibrium is unstable,the unique endemic equilibrium is globally asymptotically stable.
出处 《洛阳师范学院学报》 2012年第2期42-45,共4页 Journal of Luoyang Normal University
基金 国家自然科学基金项目(11101127 11101126 11001215) 河南科技大学博士启动基金项目(09001535)
关键词 吸血鬼模型 平衡点 基本再生数 LYAPUNOV函数 全局渐近稳定 the virus models with latency equilibrium the basic reproduction number Lyapunov functions globally asymptotically stable
  • 相关文献

参考文献11

  • 1佚名.暮光之城的剧情简介[EB/OL].2009-03-01[2011-05-26].http://movie.douban.corn/subject/2268359/.
  • 2佚名.暮光之城[EB/OL].2009-11-20[2011-05-16].http://data.movie.xunlei.eom/movie/40790.
  • 3佚名.暮光之城[EB/OL].2008-11-10[2011-05-10].http://www.youku.coin/show-page/id-ZCCl188049624l1de83b1.html.
  • 4Van Den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Math. Biosci., 2002, 180(1 -2) : 29 -48.
  • 5Guo H. Global dynamics of a mathematical model of tuber-culosis [ J ]. Canadian Appl. Math. Quart. , 2005, 13 (4) : 313 -323.
  • 6La Salle J P. The Stability of Dynamical Systems [ M ]. SIAM : Philadelphia, 1976.
  • 7刘璐菊,王春娟.一个有快慢进展的TB模型的全局稳定性分析[J].数学的实践与认识,2007,37(21):63-69. 被引量:4
  • 8Liu L, Zhou Y, Wu J. Global dynamics in a TB model incorporating case detection and two treatment stages [ J ]. Rocky Mountain Journal of Mathematics, 2008, 38 ( 5 ) : 1541-1559.
  • 9Liu L. Global stability in a tuberculosis model incorporating two latent periods [ J ]. International Journal of Biomathematics, 2009, 2 (3) : 357-362.
  • 10Smith H L. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems [ M ]. Providence, Rhode Island: American Mathematical Sociely, 1995 : 81-82.

二级参考文献8

  • 1Lasalle J P. The Stability of Dynamical Systems[M]. SIAM, Philadelphia, 1976.
  • 2Thieme R H. Convergence results and a Poincare'-Bendison trichotomy for asymptotical autonomous differential equations[J]. J Math Biol, 1992,30(7) :755-763.
  • 3Bloom B R. Tuberculosis: Pathogensis, Protection, and Control[M]. ASM Press, Washington, D. C, 1994.
  • 4Blower S M, Mclean A R, Porco T C. The intrinsic transmission dynamics of tuberculosis epidemics[J]. Nat Med, 1995,1(8):815-821.
  • 5Mccluskey C C, Lyapunov functions for tuberculosis models with fast and slow progression[J]. Math Biosci and Eng,2006,3 (4) : 603-614.
  • 6Liv E, Daley C L, Blower S M. Early therapy for latent tuberculosis infection[J]. Am J Epidemiol,2001,153 (4): 381-385.
  • 7Lietman T, Blower S M. Potential impact of tunerculosis vaccines as epidemic control agents[J]. Clinical Infectious Diseases, 2000,30(Suppl3):316-322.
  • 8P van den Driessche, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Math Bioscl, 2002,180(1-2): 29-48.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部