期刊文献+

一种基于双子空间的人脸美感分析方法 被引量:1

Dual Subspace Algorithm for Facial Attractiveness Analysis
下载PDF
导出
摘要 子空间技术是一种有效的人脸美感本征描述方法。为了克服单一子空间在人脸图像美感描述方面的不足,提出了一种基于主成分分析(PCA)与广义矩阵低秩逼近(Generalized low rank approximation matrix,GLRAM)双子空间的自动人脸美感分析方法。通过组合PCA和GLRAM子空间获取人脸美感特性的全局及局部本征描述,并利用高斯场模型(Gaussian field model,GF)构造组合子空间的内在几何结构关系。实验选用了一个光照、背景、表情、年龄和种族等变化比较显著的数据库,结果表明,提出的基于双子空间算法优于基于单一子空间的人脸美感分析方法。 Subspace technique is an efficient method for automatic facial attractiveness analysis. To enhance the intrinsic description for facial attractiveness, a dual subspace method on the subspaces of principal component analysis (PCA) and generalized low rank approximation ma- trix (GLRAM) is proposed. Thus, their individual characteristics in characterizing the global and local intrinsic description of facial attractiveness can be collaboratively boosted. Besides, the Gaussian field (GF) model is applied to reflect the geometric structure in sample space. The experiment is performed on a challenging database. It takes on significant variations in the aspects of illumination, background, facial expression, age, race, and so on. Experimental results show the advantages of the proposed dual suhspace method for facial attractiveness analy- sis over the individual subspace one.
出处 《数据采集与处理》 CSCD 北大核心 2012年第1期105-110,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61025013)资助项目 北京交通大学基本科研业务费重点专项资金(2009JBZ006)资助项目 北京市自然科学基金(4112043)资助项目
关键词 人脸美感分析 子空间分析 广义矩阵低秩逼近 主成分分析 高斯场模型 facial attractiveness analysis subspace analysis generalized low rank approximation matrix principal component analysis Gaussian field model
  • 相关文献

参考文献10

  • 1Langlois J H, Roggman L A. Infant preferences for attractive faces: rudiments of a stereotype[J]. Developmental Psychology, 1987,23(3) : 363-369.
  • 2Eisenthal Y, Dror G, Ruppin E. Facial attractiveness: beauty and the machine[J]. Neural Computation, 2006,18(1):119-142.
  • 3Chang Fu, Chou Chienhsing. A bi-prototype theory of facial attractiveness [J]. Neural Computation, 2009,21 (3) : 890-910.
  • 4Kirby M, Sirovich L. Application of the KL procedure for the characterization of human faces [J]. IEEE Trans on PAMI, 1990,12(1) : 103-108.
  • 5Turk M, Pentland A. Eigenfaces for recognition[J]. Cognitive Neuroscience, 1991,3(1) : 71-86.
  • 6Gray D, Yu Kai, Xu Wei, et al. Predicting facial beauty without landmarks [C]//11th European Conference on Computer Vision. Heraklion: Springer, 2010:434-447.
  • 7Davis B C, Lazebnik S. Analysis of human attractiveness using manifold kernel regression [C]// 15thInternational Conference on Image Processing. San Diego: [s. n. ], 2008:109-112.
  • 8Yie Jieping. Generalized low rank approximations of matrices[J]. Maehine Learning, 2005,61:167-191.
  • 9Zhu Xiaoiin, Ghahramani Z, Lafferty J. Semi-supervised learning using Gaussian Fields and harmonic functions[C]//20th International Conference on Machine Learning. Washington DC: [s.n. ], 2003.
  • 10White R, Eden A. Automatic prediction of human attractiveness [R]. UC Berkely, USA..2004.

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部