期刊文献+

基于EMD与GA-PLS的特征选择算法及应用 被引量:3

Feature selection algorithm based on EMD and GA-PLS and its application
下载PDF
导出
摘要 针对振动信号非平稳性和特征优化选择的问题,提出一种基于EMD和GA-PLS的特征选择算法。在该算法中,首先,采用EMD方法将振动信号分解成多个固有模态函数(Intrinsic Mode Function,IMF),对IMF分量建立自回归(AR)模型,以AR模型系数和残差作为初始特征向量,然后,遗传算法与偏最小二乘法相结合(GA-PLS)的算法对初始特征向量进行筛选得到新的特征向量,最后,以新的特征向量为输入,建立分类器,用来识别手动换向阀的工作状态和判断故障类型。实验结果表明,采用该特征选择算法能准确地选择出特征,并能应用于手动换向阀的故障诊断。 In order to solve problems of the nonstationarity of vibration signal and the optimization of feature selection,feature selection algorithm based on EMD and GA-PLS was proposed.In the algorithm,EMD method was used to decompose the vibration signals into a number of intrinsic mode function(IMF) components,and the auto-regressive(AR) model of each IMF component was established.The main auto-regressive parameters and the loss function were regarded as original feature vectors.Then,GA-PLS algorithm was used to selecte new feature vectors,which are highly correlated with fault information,from original feature vectors.With these new feature vectors used as inputs,classifiers were established for identifying the conditions and fault patterns of manually operated directional valves.Experimental results show that all the feature vectors are selected correctly,and the proposed algorithm can be well used in fault diagnosis.
作者 李胜 张培林
出处 《振动与冲击》 EI CSCD 北大核心 2012年第4期134-138,共5页 Journal of Vibration and Shock
关键词 经验模态分解 自回归模型 遗传算法与偏最小二乘法算法 特征选择 手动换向阀 EMD(empirical mode decomposition) AR(auto-regressive) model GA-PLS(genetic algorithm-partial least squares) fault selection manual operated directional valve
  • 相关文献

参考文献12

  • 1Mcfadden P D. Window function for the calculation of the time domain averages of the vibration of the individual planet gears and sun gear in an epicyclic gearbox [ J ]. ASME Journal of Vibration and Acoustics. 1994,116 179 -187.
  • 2刘红星,林京,屈梁生,李振武.信号时域平均处理中的若干问题探讨[J].振动工程学报,1997,10(4):446-450. 被引量:39
  • 3Huang N E, Shen Z. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc. R. Soc. Lond. A, 1998,454:903 - 905.
  • 4Huang N E, Shen Z, Long S R. A new view of non-linear water waves: the Hilbert spectrum [ J ]. Annu Rev Fluid Mech,1999(31 ) : 417 -457.
  • 5Ljung L. System Identification: Theory for the User (2rid Edition ) [ M ]. Beijing, China: Tsinghua University Press ,2002.
  • 6贺湘宇,何清华,邹湘伏,谢习华,黄志雄.基于RBF网络和ARX模型的液压系统故障诊断方法[J].系统仿真学报,2009,21(1):282-285. 被引量:11
  • 7江四厚,陈小虎,王汉功,陈中华.基于Hilbert-Huang变换的振动信号特征提取[J].机床与液压,2008,36(11):199-201. 被引量:6
  • 8徐长航,刘吉飞,陈国明,谢静.经验模态分解和魏格纳-维利分布在往复泵泵阀振动信号特征提取中的应用[J].中国石油大学学报(自然科学版),2010,34(3):99-103. 被引量:11
  • 9Gonzalez A L. Leardi R. Genetic algorithms applied to feature selection in PLS regression:how and when to use them [ J ]. Chemometr Intell Lab, 1998,41 (2) : 195 - 208.
  • 10Leardi R. Application of genetic algorithm-PLS for feature selection in spectral data sets [J]. J Chemometr, 2000, 14(5/6) :643.

二级参考文献26

共引文献63

同被引文献32

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部