摘要
根据建立了四边简支受控矩形薄板受面内高斯白噪声激励的振动模型,并用Galerkin变分法将其化简为二自由度常微分非线性动力学方程。又利用拟不可积Hamilton系统平均理论将方程等价为一个一维的Ito随机过程,随后结合随机动态规划方法,得到了使系统可靠性最大的随机最优控制策略。最后建立了受控系统的条件可靠性函数所满足的Backward Kolmogorov(BK)方程,根据初始条件和边界条件得出数值结果。数值结果表明,随机最优控制对系统的可靠性提升有明显作用。
A stochastic two dimensional dynamical model of controlled thin rectangular plate subjected to in-plate stochastic parametrical excitation was proposed based on Galerkin's approach.The model was further simplified applying the stochastic average theory of quasi-integral Hamilton system.The optimal control strategy was derived from the dynamical programming equations and the control constraints.The backward Kolmogorov equation for reliability function of the controlled system was established.The dynamical programming equations for maximum reliability problem were finalized and their relationships to the backward Kolmogorov equation for reliability function were pointed out.The numerical results show that the procedure is effective and efficient.
出处
《振动与冲击》
EI
CSCD
北大核心
2012年第4期179-183,共5页
Journal of Vibration and Shock
基金
国家自然科学基金重点资助项目(10732020)
关键词
矩形薄板
随机最优控制
首次穿越
thin rectangular plate
stochastic optimal control
first passage failure