期刊文献+

Mg-6%Zn-10%(β-Ca_3(PO_4)_2)复合材料的制备及腐蚀降解行为 被引量:1

Fabrication and corrosion properties of Mg-6%Zn-10%(β-Ca_3(PO_4)_2) composite
下载PDF
导出
摘要 以Mg-6%Zn合金为基体、β-Ca3(PO4)2为强化相,采用粉末冶金工艺制备Mg-6%Zn-10%(β-Ca3(PO4)2)复合材料。利用光学显微镜观察复合材料的显微组织,采用X射线衍射仪分析相组成,采用压缩试验评估复合材料力学性能,采用动电位极化法和浸泡实验研究复合材料在模拟体液(SBF)中的腐蚀行为。结果表明:β-Ca3(PO4)2在烧结过程中与基体合金没有发生明显反应;复合材料密度为1.936 g/cm3,压缩强度为339 MPa,弹性模量为24 GPa;添加β-Ca3(PO4)2可降低Mg-6%Zn在SBF中的腐蚀速度;Mg-6%Zn-10%(β-Ca3(PO4)2)复合材料在SBF中的电化学腐蚀速度为2.277 mm/y,浸泡30 d的浸泡腐蚀速度为2.133 mm/y,SBF的pH值随着浸泡时间的延长而上升,最终稳定在10。 Using Mg-6%Zn as the matrix and β-Ca3(PO4)2 as reinforcement,the Mg-6%Zn-10%(β-Ca3(PO4)2) bio-composite was fabricated by the powder metallurgy method.The microstructure of Mg-6%Zn-10%(β-Ca3(PO4)2) biocomposite was observed by optical microscopy and the phases were analyzed by X-ray diffractometry.The mechanical properties were evaluated by compression tests.The corrosion behavior of the bio-composite in simulated body fluid(SBF) was studied by potentiodynamic polarization and immersion tests.The results show that the reaction between β-Ca3(PO4)2 particles and Mg-6%Zn matrix during sintering is not observed.The density of the biocomposite is 1.936 g/cm3,the compression strength is 339 MPa and the elastic modulus is 24 GPa.The additive of β-Ca3(PO4)2 reduces the corrosion rate of Mg-6%Zn.The electrochemical corrosion rate of Mg-6%Zn-10%(β-Ca3(PO4)2) is 2.277 mm/y,and the calculated corrosion rate of the biocomposite immersed in SBF for 30 d is 2.133 mm/y.During the immersion test,the pH value of SBF increases gradually,and at last stabilizes at 10.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2012年第1期39-44,共6页 The Chinese Journal of Nonferrous Metals
基金 粉末冶金国家重点实验室开放课题资金项目
关键词 Mg-6%Zn-10%(β-Ca3(PO)4) 复合材料 腐蚀 力学性能 生物降解 Mg-6%Zn-10%(β-Ca3(PO4)2) biocomposite corrosion mechanical property biodegradation
  • 相关文献

参考文献17

  • 1SERRE C M,PAPILLARD M,CHAVASSIEUX P,VOEGEL J C,BOIVIN G.Influence of magnesium substitution on a collagen–apatite biomaterial on the production of a calcifying matrix by human osteoblasts[J].Journal of Biomedical Materials Research,1998,42(4):626-633.
  • 2KUWAHARA H,AL-ABDULLAT Y,MAZAKI N,TSUTSUMI S,AIZAWA T.Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank’s solution[J].Material Transactions,2001,42(7):1317-1321.
  • 3戴尅戎.骨折内固定与应力遮挡效应[J].医用生物力学,2000,15(2):69-71. 被引量:25
  • 4STAIGER M P,PIETAK A M,HUADMAI J,DIAS G.Magnesium and its alloys as orthopedic biomaterials:A review[J].Biomaterials 2006,27(9):1728-1734.
  • 5EL-RAHMAN S S A.Neuropathology of aluminum toxicity in rats(glutamate and GABA impairment)[J].Pharmacological Research,2003,47(3):189-194.
  • 6NAKAMURA Y,TSUMURA Y,TONOGAI Y,SHIBAYA T,ITO Y.Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats[J].Fundamental and Applied Toxicology,1997,37(2):106-116.
  • 7WITTE F,KAESE V,HAFERKAMP H,SWITZER E,MEYER-LINDENBERG A,WIRTH C J,WINDHAGEN H.In vivo corrosion of four magnesium alloys and the associated bone response[J].Biomaterials,2005,26(17):3557-3653.
  • 8SONG G L.Control of biodegradation of biocompatible magnesium alloys[J].Corrosion Science,2007,49(4):1696-1701.
  • 9ZHENG Y F,GU X N,XI Y L,CHAI D L.In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy[J].Acta Biomaterialia,2010,6(5):1783-1791.
  • 10ZHANG S X,ZHANG X N,ZHAO C L,LI J N,SONG Y,XIE C Y,TAO H R,ZHANG Y,HE Y H,JIANG Y,BIAN Y J.Research on an Mg-Zn alloy as a degradable biomaterial[J].Acta Biomaterialia,2009,6(2):626--640.

共引文献24

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部