期刊文献+

纳米/微米Cu的力学性能数值模拟 被引量:1

Numerical simulation of mechanical properties in nano-/micro-crystalline Cu
下载PDF
导出
摘要 基于复合材料的观点建立纳米/微米Cu细观力学研究模型,采用有限元数值模拟技术对纳米/微米Cu的力学性能进行数值模拟,分析纳米/微米晶的分布、体积分数和形状对纳米/微米Cu强度和塑性的影响。结果表明:与层状分布相比,立方/球状密封分布的纳米/微米Cu强度和塑性均较大,其塑性随微米晶增韧相体积分数的增大而增大,而屈服强度则逐渐降低;随微米晶增韧相形状因子(有效长径比)的增大,纳米/微米Cu的力学性能表现出明显的各向异性。 A micro-mechanical model of a nano-/micro-crystalline pure Cu was developed on the basis of the idea of composites.The mechanical properties were analyzed by finite element simulation.The effects of nano-/micro-crystalline distribution,volume fraction and shape on the tensile strength and ductility were investigated.The results indicate that,under uniaxial tensile loading,the tensile strength and ductility in cube or sphere geometry distribution are higher compared to the sandwich geometry distribution.With the increase of microcrystalline volume fraction of toughening phase,the ductility of the nano-/micro-crystalline pure Cu increases and the yield strength decreases.The strength and ductility of the nano-/micro-crystalline pure Cu have an obvious isotropy with the increase of the shape factor of microcrystalline toughening phase.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2012年第1期201-207,共7页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(59974018)
关键词 CU 细观力学模型 韧化 有限元分析 数值模拟 Cu micro-mechanical model toughening finite element analysis numerical simulation
  • 相关文献

参考文献4

二级参考文献5

  • 1朱敏,Nanostruct Mater,1995年,6期,921页
  • 2Ma E,J Appl Phys,1993年,74卷,955页
  • 3Lu K,Scr Metall Mater,1993年,28卷,1465页
  • 4Lu K,Scr Metall Mater,1990年,24卷,2319页
  • 5刘相华,陆匠心,张丕君,杜林秀,王国栋.400~500MPa级碳素钢先进工业化制造技术[J].中国有色金属学报,2004,14(F01):207-210. 被引量:17

共引文献27

同被引文献16

  • 1HIBBARD G D, AUST K T, ERB U. Thermal stability of electrodeposited nanocrystalline Ni-Co alloys[J]. Materials Science and Engineering A, 2006, 433(1/2): 195-202.
  • 2QIN Li-yuan. Microstructures and properties characteristic of electrodeposited nanocrystalline Ni and Ni-Co alloys[D]. Changchun: College of Materials Science and Engineering, Jilin University, 2010: 1-122.
  • 3VALIEV R. Nanostructuring of metals by severe plastic deformation for advanced properties[J]. Nature Materials, 2004, 3(8): 511-516.
  • 4LU L, CHEN X, HUANG X, LU K. Revealing the maximum strength in nanotwinned copper[J]. Science, 2009, 323(5914): 607-610.
  • 5SHEN X, LIAN J, JIANG Z, JIANG Q. The optimal grain sized nanocrystalline Ni with high strength and good ductility fabricated by a direct current electrodeposition[J]. Advanced Engineering Materials, 2008, 10(6): 539-546.
  • 6LI H. EBRAHIMI F. Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals[J]. Applied Physics Letters, 2004, 84(12): 4307-4309.
  • 7LIU Y, YANG H, LIU Y, JIANG B, DING J, WOODWARD R. Thermally induced fcc,--~hcp martensitic transformation in Co-Ni[J]. Acta Materialia, 2005, 53(13): 3625-3634.
  • 8KARIMPOOR A A, ERB U, AUST K T, PALUMBO G. High strength nanocrystalline cobalt with high tensile ductility[J]. Scripta Materialia, 2003, 49(7): 651-656.
  • 9LU K, LU L, SURESH S. Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science, 2009, 324(5925): 349-352.
  • 10EBRAHIMI F, AHMED Z, LI H. Effect of stacking fault energy on plastic deformation of nanocrystalline face-centered cubic metals[J]. Appl Phys Lett, 2004, 85(17): 3749-3751.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部