期刊文献+

工艺参数对Sn-0.3Ag-0.7Cu/Cu焊点界面组织和力学性能的影响 被引量:4

Effect of Processing Parameters on Interfacial Microstructure and Mechanical Property of Sn-0.3Ag-0.7Cu/Cu Solder Joint
原文传递
导出
摘要 互连焊点界面反应形成的金属间化合物(IMC)对焊点服役可靠性会产生显著影响。研究了不同工艺参数(回流温度、回流时间和回流次数)条件下,Sn-0.3Ag-0.7Cu/Cu焊点界面金属间化合物的演变及对焊点力学性能的影响,同时对焊点断裂机制进行了分析。结果表明,随着回流温度和回流时间的增加,金属间化合物η-Cu6Sn5相的形貌由贝状向板条状转变,并可观察到η相溶入焊点内部。在265℃回流时,随着回流时间增加,贝状η相不断长大,晶粒数不断减少;界面IMC的生长符合幂指数生长规律,其生长指数为0.339。回流次数对焊点剪切强度的影响为先增后减,断裂模式从纯剪切断裂到微孔聚集型断裂再到局部脆断转变。 The intermetallic compound (IMC) formed at the interface between solder and substrate has a significant effect on the reliability of interconnection solder. The evolution of interfacial IMC in Sn-0.3Ag-0.7Cu/Cu solder joint and its effect on the mechanical properties were investigated under the different processing parameters including reflowing temperature, reflowing number and reflowing time, meanwhile, the fracture mechanism was also evaluated. The results indicate that IMC (η-Cu6Sn5) morphology is transformed from scallop-shaped to lath-shaped with the increase of reflowing time and temperature, and η phase dissolved into the solder position can be observed. With increasing in the reflowing time at 265 ℃, the η phase is grown increasingly with the decrease of grains. The growth rate of the interfacial IMC follows index power rules and its growth exponent is 0.339. It is also shown that the influence of the reflowing number on the shear strength is first increased and then decreased, and fracture mechanism is changed from pure shear fracture to micro-pore gathering fracture and then to partial brittle failure.
出处 《特种铸造及有色合金》 CAS CSCD 北大核心 2012年第2期168-171,175,共5页 Special Casting & Nonferrous Alloys
基金 国家自然科学基金(NSFC-广东联合)重点资助项目(U0734006)
关键词 Sn-0.3Ag-0.7Cu无铅钎料 回流焊 IMC形貌 剪切强度 断裂机制 Sn-0.3Ag-0.7Cu Lead-Free Solder Reflow Welding IMC Morphology Shear Strength Fracture Mechanism
  • 相关文献

参考文献10

  • 1KIM H,ZHANG M,CHATAN M,et al.Improved drop reliability performance with lead free solders of low Ag content and their failure modes[A].//Electronic components and technology conference[C].Japan,2007.
  • 2KIM K S,HUH S H.Effects of intermetallic compounds on properties of Sn Ag-Cu lead-free soldered joints[J].Journal of Alloy and Compound,2003,352:226-236.
  • 3CHENG F J,GAO F,ZHANG J Y,et al.Tensile properties and wettability of SAC0307 and SAC105 low Ag lead-free solder alloys[J].Journal of Mater.Sci.,2011,53:3 424-3 429.
  • 4LEE J H,YU A M.Reaction properties and interfacial intermetallics for Sn-xAg-0.5Cu solders as a function of Ag content[J].Metals and Materials International,2008,82:649-654.
  • 5SUNDELIN J J,NURMI S T,RISTOLAINEN E O,et al.Mechanical and microstructural properties of SnAgCu solder joints[J].Materials Science and Engineering,2006,A420:55-62.
  • 6DYBKOV V I.Reaction diffusion and solid state chemical kinetics[M].Kyiv:The IPMS publications,2002.
  • 7CHANG D,BAI F.The study of OSP as reliable surface finish of BGA substrate[A]. //Electronic Components and Technology Conf[C].China,2004,149-153.
  • 8LIN P,YAO P.Effects of multiple reflows on interfacial reaction and shear strength of SnAgCu and SnPb solder joints with different PCB surface finishes[J].Journal of Alloys and Compounds,2000,385:188-194.
  • 9KIM P W,KIM B S,AHN E C,et al.Improvement of drop reliability in OSP/Cu pad finished packages[A].//Electronics Packaging Technology Conf[C].China,2006,168-173.
  • 10SUN F,HOCHSTENBACH P.Fracture morphology and mechanism of IMC in low-Ag SAC solder/UBM for WLCSP[J].Microelectronics Reliability,2008,48:1 167-1 170.

同被引文献43

  • 1黄惠珍,黄起森,彭曙,周浪.添加Ag对Sn-9Zn无铅钎料合金性能的影响[J].特种铸造及有色合金,2006,26(3):179-181. 被引量:12
  • 2刁慧,王春青,赵振清,田艳红,孔令超.SnCu钎料镀层与Cu/Ni镀层钎焊接头的界面反应[J].中国有色金属学报,2007,17(3):410-416. 被引量:16
  • 3YU D Q, XIE H P, WANG L. Investigation of interfacial micro- structure and wetting property of newly developed Sn-Zn-Cu solders with Cu substrate[J]. J. Alloys and Compd. , 2004, 385 : 119-125.
  • 4KIM Y S, HWANG C W, SUGANUMA K. Effect of composition and cooling rate on Microstructure and tensile properties of Sn-Zn Bi alloys[J]. J. Alloys and Compd. , 2003, 352:237-245.
  • 5SHOHJI I, GAGG C, PLUMBRIDGE W J. Creep properties of Sn-8Zn-3Bi lead-free alloy[J]. J. Eleetron. Mater. , 2004, 33(8): 923- 927.
  • 6WUCM, YU DQ, LAWCMT, et al. The properties of Sn-Zn lead-free solder alloys doped with trace rare earth elements[J]. J. Electron. Mater., 2002, 31(9): 921-927.
  • 7MASAYUKI K, TADAAKI S. Development of Sn-Zn-A1 lead-free solder alloys[J]. J, Fujitsu Sci. Tech. , 2005, 41(2): 225-235.
  • 8LIN K L, LIN T P. High-temperature oxidation of a Sn-Zn-Al solder[J]. Oxid. Metals, 1998, 3(4): 255-267.
  • 9LINK L , LIU T P. The electrochemical corrosion behaviour of Pb-free AI-Zn-Sn solders in NaC1 solution~J]. Mater. Chem. Phys. , 1998, 56: 171-176.
  • 10CHEN W, XUE S, WANG H, et al. Effects of rare earth Ce on properties of Sn-9Zn lead-free solder[J]. J. Mater. Sci. ,2010,21 (7) :719-725.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部