期刊文献+

基于多尺度压缩感知的信号重构 被引量:1

Signal Reconstruction Based on Multiscale Compressed Sensing
下载PDF
导出
摘要 压缩感知是近几年新兴的采样理论,它指出如果信号在某些基上是可压缩的,那么通过很少的观测即可获得信号的准确重构。当信号采用小波基并在压缩感知的基础上,提出了多尺度压缩感知,数值仿真结果表明多尺度压缩感知可以给出更好的重构效果。 Compressed Sensing is a new sampling theorem,it points out that if a signal can be compressed under some conditions,that a very accurate reconstruction can be obtained from a relatively small number of non-traditional samples.On the basis of compressed sensing,the paper presents multiscale compressed sensing.The numerical experiments demonstrate that multiscale compressed sensing can give better quality reconstruction than a literal deployment of the compressed sensing methodology.
出处 《火力与指挥控制》 CSCD 北大核心 2012年第1期131-133,共3页 Fire Control & Command Control
关键词 压缩感知 多尺度 信号重构 compressed sensing multiscale signal reconstruction
  • 相关文献

参考文献9

  • 1Shannon C E. Communication in the Presence of Noise[J]. Proc. IRE, 1949,37 : 10-21.
  • 2Unser M. Sampling-50 Years After Shannon [J]. Proceeding of the IEEE, 2000,88(4) : 569-587.
  • 3石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 4Cands E. Compressive Sampling[C]//Proceedings of the International Congress of Mathematicians. adrid ,Spain, 2006,3:1433-1452.
  • 5Cands E, Romberg J, Terence T. Robust Uncertainty Principles : Exact Signal Reconstruction from Highly Incomplete Frequency Information [J]. IEEE Trans. on Information Theory, 2006,52 (2) : 489-509.
  • 6Cands E, Romberg J. Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions [J]. Foundations of Comput Math, 2006,6(2) : 227-254.
  • 7Donoho D L. Compressed Sensing[J]. IEEE Trans. on Information Theory, 2006,52 (4) : 1289-1306.
  • 8Cands E J, Romberg J. Practical Signal Recovery from Random Projections [ C ]//Proc. SPIE Computational Imaging, 2005,5674 : 76-86.
  • 9Donoho D L,Tsaig Y. Extensions of Compressed Sensing [J]. Signal Processing, 2006, 86 (3) : 533- 548.

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献710

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部