摘要
首先将战术装备维修保障过程描述为M/M/c/k混合规则的排队过程,其损坏装备到达服从相互独立的泊松分布,维修时间服从相互独立的指数分布。同时考虑系统的到达率和维修率随系统中装备数量的变化,重要战损装备等待维修时的不耐烦性以及重要装备对一般装备的强占性优先权情况,结合战术装备维修保障系统的结构和规模,建立战术装备维修保障M/M/3/12排队模型。列出模型的平衡方程,采用矩阵的分析方法得到重要装备和一般装备的稳态分布表达式,并以队长为指标进行了系统性能的计算。
This paper describes tactics maintenance support as M/M/c/k queue process,of which the damage equipment-arrival is subordinate to the independent Poisson distribution each other,the maintenance-time the exponential distribution,the arrival rate and the maintenance service rate changed with the number of damage equipments in the system,and the important damage equipments have the preemptive priority and exponential impatience.We set up tactics maintenance support queue model based on tactics maintenance support system structure and size and list state equation.The queue length distribution in stationary state and performance measures are gained by using the method of matrix analysis.
出处
《火力与指挥控制》
CSCD
北大核心
2012年第1期185-189,共5页
Fire Control & Command Control
关键词
维修保障系统
排队模型
强占优先权
稳态分布
maintenance support system
queue model
preemptive priority
steady state distribution