期刊文献+

棱镜-光栅-棱镜型光谱成像系统光学设计 被引量:11

Imaging spectrometer optical design based on prism-grating-prism dispersing device
下载PDF
导出
摘要 为实现成像光谱仪系统的直视性和小型化特点,设计一种棱镜-光栅-棱镜(PGP)结合式元件,作为分光系统的成像光谱仪光学系统装置。系统主要包括PGP分光原件、准直系统、成像系统和接收系统。光栅采用体全息相位光栅,可以获得很高的衍射效率,准直和成像镜采用对称式结构,可以有效地消垂轴像差。根据实际指标探测器像元尺寸为20μm×20μm,像元数为512×512,采用双像元合并方法,光谱通道数为148个,狭缝大小为10.2mm×10.2mm,波段在400nm~800nm,物方数值孔径为0.15。分析了PGP光谱成像系统的原理、特点,对参数关系和体全息相位型光栅的衍射效率进行了详细的讨论。分析结果表明:PGP元件在整个光谱范围内理论衍射效率大于0.6,采用ZEMAX软件进行优化设计,得到系统的平均光谱分辨率优于3nm,在截止频率处平均传递数大于0.7,系统总长90mm。 In order to make the imaging spectrometer compact and to be directly viewed, an optical system incoporating prism-grating-prism(PGP) component was designed. The system includes PGP device, collimating lens, imaging lens and receiving device. The system uses volume hologram bragg diffraction grating(VHDG) instead of ordinary ruled grating, which have high diffraction efficiency. Symmetric structure that can eliminate lateral abberations automatically is applied to this system. The requirements of design specification are given, which include 512×512 pixels CCD with pixel size of 20 um ×20 um, 148 spectrum channels,slit size of 10 mm ×0. 02 mm,object NA of 0. 15, and operation wavelength ranging from 400 nm to 800 nm. System concept and features, diffraction efficiency, paraments relationship are discussed. According to analysis, diffraction efficiency is higher than 0. 6 in the whole spectrum range. Using ZEMAX optical optimization software, the MTF of the sysytem is better than 0. 7 at the Nyquist frequency, the spectural resolution is better than 3 nm, and the length of the sysytem is 90 mm.
出处 《应用光学》 CAS CSCD 北大核心 2012年第1期37-43,共7页 Journal of Applied Optics
关键词 PGP 体全息相位光栅 成像光谱仪 衍射效率 光学设计 PGP volume hologram bragg diffraction grating imaging spectrometer diffraction efficiency optical design
  • 相关文献

参考文献11

二级参考文献52

共引文献134

同被引文献89

  • 1肖功海,舒嵘,薛永祺.显微高光谱成像系统的设计[J].光学精密工程,2004,12(4):367-372. 被引量:35
  • 2巴音贺希格.光谱仪谱线和谱带弯曲现象的精确表述方式[J].光谱学与光谱分析,2005,25(9):1524-1529. 被引量:4
  • 3刘圣伟,甘甫平,闫柏琨,杨苏明,王润生,王青华,唐攀科.成像光谱技术在典型蚀变矿物识别和填图中的应用[J].中国地质,2006,33(1):178-186. 被引量:29
  • 4岑兆丰,李晓彤,朱启华.光学系统杂散光分析[J].红外与激光工程,2007,36(3):300-304. 被引量:39
  • 5吴国安.光谱仪器设计[M].北京:科学出版社,1987:8487,104-105.
  • 6R O Green, M L Eastwood, C M Sarture, et al..Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS) [J].Remote Sens E, 1998, 65(3): 227-248.
  • 7Y h Qi, B Xue, Y Y Zhao, et al..Design of camera and spectrometer dual-use system [C].SPIE, 2013, 8910: 891014.
  • 8H Ku, S H Kim, H J Kong, et al..Optical design, performance, and tolerancing of an Offner imaging spectrograph [C].SPIE, 2012, 8491: 84910K.
  • 9M Aikio.Hyperspectral prism-grating-prism imaging spectrograph [J].VTT Publications, 2001, 435: 16-17.
  • 10张善文.衍射光栅积分理论与宽波段金属光栅、激光器调谐光栅设计方法研究[D].北京: 中国科学院大学, 2009.26-27.

引证文献11

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部