期刊文献+

一种基于直推置信的遗传优化概率神经网络 被引量:1

An optimized probabilistic neural network based on transductive confidence
下载PDF
导出
摘要 提出一种基于直推置信机制的遗传优化概率神经网络用于水下航行器的机械噪声源识别.该网络模型采用遗传算法优化概率神经网络的结构,并且确定最优控制参数,在保证分类质量的同时提高了分类器的识别速度.分类器在输出端引入直推置信机制,突破了传统分类器不能有效拒识突变样本的局限,通过置信机制实现无突变噪声训练样本情况下的突变噪声的识别.实验结果表明,该网络模型具有良好的泛化性能、识别效果好,并且能有效识别突变噪声样本,是一种实用的水下航行器机械噪声源识别模型. An optimized probabilistic neural network for underwater vehicle mechanical noise source identification is proposed in this paper.The classifier used genetic algorithm optimizing neural network structure and optimal control parameters.It improved the classifier recognition and ensured the quality of classification.The classifier can reject abnormity sample by confidence mechanism and realize training without noise samples.The experimental results show the network model has good generalization and recognition performance.And it is a practical underwater vehicle mechanical noise source identification model.
出处 《南京大学学报(自然科学版)》 CSCD 北大核心 2012年第1期48-54,共7页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(50775218)
关键词 噪声源识别 概率神经网络 遗传算法 直推置信 noise source recognition,probabilistic neural network,genetic algorithm,transductive confidence
  • 相关文献

参考文献11

  • 1章林柯,何琳,朱石坚.潜艇主要噪声源识别方法研究[J].噪声与振动控制,2006,26(4):7-10. 被引量:27
  • 2Specht D F. Probabilistic neural networks. Neural Networks, 1990, 3(1):109-118.
  • 3Simon L, Karim M N. Probabilistic neural net- works using Bayesian decision strategies and a modified Gompertz model for growth phase clas- sification in the batch culture of Bacillus subti- lis. Biochemical Engineering Journal, 2001, 7 (1) :41-48.
  • 4Steenhoek L W A. Prohabilistic neural network computer vision system for corn kernel damage evaluation. PhD Thesis, Iowa State University,USA, 1999,12-14.
  • 5王崇骏,于汶滌,陈兆乾,谢俊元.一种基于遗传算法的BP神经网络算法及其应用[J].南京大学学报(自然科学版),2003,39(5):459-466. 被引量:60
  • 6赵温波,黄德双,郭璘.径向基概率神经网络结构的遗传优化[J].中国科学技术大学学报,2003,33(6):733-741. 被引量:6
  • 7Proedru K, Nouretdinov I, Vovk V, et al. Transductive confidence machine for pattern recognition. Elomaa T. Proceedings of the 13th European Conference on Machine Learning. LNAI 2430, Heidelberg: Springer-Verlag, 2002,381-390.
  • 8Barbarh D, Domeniconi C, Rogers J P. Detec- ting outliers using transduetion and statistical testing. Ungar L, Craven M, Gunopulos D, et al. Proceedings of the 12th ACM SIGKDD In- ternational Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2006,55-64.
  • 9Vovk V, Gammerman A, Saunders C. Ma- chine-learning applications of algorithmic ran- domness. Proceedings of the 16^th International Conference on Machine Learning, Bled, Sloveni- a,1999,444-453.
  • 10李洋,方滨兴,郭莉,陈友.基于直推式方法的网络异常检测方法[J].软件学报,2007,18(10):2595-2604. 被引量:26

二级参考文献38

共引文献115

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部