期刊文献+

基于相邻关系的地理标识语言空间线对象离群检测算法

Algorithms for detecting outlier spatial lines based on adjacent relationship for geography mark-up language data
下载PDF
导出
摘要 提出了两种基于相邻关系的地理标识语言空间线对象离群检测算法:DOL-AR1和DOL-AR2,定义了基于相邻关系的空间线对象之间的相异度,DOL-AR1将基于相邻关系的相异度作为空间线对象之间的距离度量准则,利用Density-based Spatial Clustering of Applications with Noise算法检测出离群的空间线对象.算法DOL-AR2以基于相邻关系的相异度为准则对空间线对象进行聚类,根据每个簇的离群因子,检测该簇是否离群.实验结果表明,算法DOL-AR1和算法DOL-AR2都能有效地检测出离群的线对象,本文对提出的两种离群检测算法的性能进行了比较,发现算法DOL-AR2的效率要高于算法DOL-AR1的效率. Outlier detection is an important problem for data mining.Outlier detection is intended to discover unexpected,interesting and useful patterns of further analysis.Spatial outlier detection is aimed at detection of spatial objects different from other spatial objects in their spatial attributes or topological relationships.Now,only point objects without line or polygon objects are considered in the existing spatial outlier detection algorithms in which different degrees on topological relationships are not included.Algorithms DOL-AR1 and DOL-AR2 are presented here for detecting outlier lines based on adjacent relationship for GML data.Adjacent relations between each spatial line and other spatial objects are computed firstly.The difference degree between different lines that have the same type as the previous line on adjacent relationship is defined.In algorithm DOL-AR1,the difference degree is used as the standard of the distance between different lines.Density-based spatial clustering of applications with noise is used in algorithm DOL-AR1 in order to detect outlier spatial lines.In algorithm DOL-AR2,firstly,cluster spatial lines by the difference degree on adjacent relationship,then define the outlier factor of each cluster,the outlier factor of the cluster determines whether the cluster is 'outlier' or not.The experimental results show that algorithms DOL-AR1 and DOL-AR2 both can detect outlier lines based on adjacent relationship accurately and effectively.However,algorithm DOL-AR2 can run more effectively.
作者 朱娟 吉根林
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期84-90,共7页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(40871176)
关键词 空间数据挖掘 离群检测 空间线对象 相邻关系 spatial data mining,outlier detection,spatial lines,adjacent relationship
  • 相关文献

参考文献16

  • 1Barnett V,Lewis T. Outliers in statistical data. New York: John Wiley and Sons, 1994.
  • 2Knorr E, Ng R. Finding intensional knowledge of distance-based outliers. Proceedings of the 25^th Very Large Databases Conference Edin- burgh: Morgan Kaufman Publishers, 1999, 211-222.
  • 3Breunig M M,Kriegel H P,Ng R T,etal. Op- tics of identifying density-based local outliers. Proceedings of the 3^rd European Conferenee on Principles and Praetice of Knowledge Discovery in Databases, Lecture Notes in Computer Sci- ence 1704. Prague : Springer, 1999,262- 270.
  • 4Prearata F, Shamos M. Computational geome- try : An introduction. Berlin: Springer- Verlag, 1988.
  • 5Jagadish H V, Koudas N, Muthukrishnan S. Mining deviants in a time series databases. Pro- ceedings of the 25^th Very Large Databases Con- ferenee Edinburgh, Edinburgh: Morgan Kauf- man Publishers, 1999,102- 113.
  • 6郑建国,焦李成.偏差检测挖掘方法研究[J].计算机工程,2001,27(8):33-35. 被引量:7
  • 7Sheng Y J, Qing B A. Clustering-based outlier detection method. The 5^th International Confer- ence on Fuzzy Systems and Knowledge Discov- ery. Piscataway: IEEE Computer Society, 2008,429-433.
  • 8于绍越,商琳.基于信息熵的相对离群点的检测方法:ENBROD[J].南京大学学报(自然科学版),2008,44(2):212-218. 被引量:11
  • 9薛安荣,鞠时光.基于空间约束的离群点挖掘[J].计算机科学,2007,34(6):207-209. 被引量:12
  • 10贾瑞玉,钱光超,张然,李龙澍.空间离群点的检测算法[J].计算机技术与发展,2008,18(5):28-30. 被引量:3

二级参考文献39

  • 1张骏,秦小麟.利用简化9交模型进行三维拓扑分析[J].计算机辅助设计与图形学学报,2006,18(12):1817-1823. 被引量:9
  • 2Barnett V,Lewis T.Outliers in Statistical Data[M].New York:John Wiley & Sons,1994:194-223.
  • 3Knorr E M,Ng R T.Algorithms for mining distance-based outliers in large datasets[C]//Proc of 1998 International Conference.Very Large Data Base (VLDB98).New York:VLDB Endowment,1998:392-403.
  • 4Breunig M M,Krueger H P,Ng R,et al.LOF:identifying density-based local outliers[C]//Proc of ACM SIGMOD2000 International Conference on Management of Data.Dallas,Texas:ACM Press,2000:93-104.
  • 5Knorr E M,Ng R T.A unified notion of outliers:properties and computation[C]//Proc the 3rd International Conference on Knowledge Discovery and Data Mining.California:IEEE Press,1997:219-222.
  • 6HAN Jia-wei,KAMBER M.Data mining:concepts and techniques[M].San Fransisco..Morgan Kaufmann Publishers,2001.
  • 7KNORR E M,NG R T.Algorithms for mining distance-based outliers in large data sets[C]//Proceedings of the 24th VLDB Conference.San Francisco,CA:Morgan Kaufmann Publishers,1998:392-403.
  • 8BREUNIG M M,KRIEGEL、H P,NG R T,et al.LOF:identifying density-based local outliers[J].ACM SIGMOD Record,2000,29(2):93-104.
  • 9PAPADIMITRIOU S,KITAGAWA H,GIBBONS P B,et al.LOCI:fast outlier detection using the local correlation integral[C]//Proceedings of the 19th International Conference on Data Engineering.New York:IEEE Press,2003:315-326.
  • 10REN D,WANG Bao-ying,PERRIZO W.RDF:a density-based outlier detection method using vertical data representation[C]//Proceedings of the 4th IEEE International Conference on Data Mining.New York:IEEE Press,2004:503-506.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部