期刊文献+

求解车辆路径问题的多邻域下降搜索蚁群优化算法 被引量:3

Ant colony optimization algorithm for capacitated vehicle routing problem based on multiple neighborhood descent searching
下载PDF
导出
摘要 本文提出一种结合改进蚁群优化算法和多邻域下降搜索的混合启发式算法IACO_MND,求解运力限制的车辆路径问题.利用改进的蚁群系统算法构造方法产生多个可行解,再将产生的解作为多邻域下降搜索的初始解.在搜索过程中使用三种不同的邻域结构:插入,交换和2-opt以扩大局部搜索的范围.实验对不同规模的benchmark算例进行求解,结果表明本文算法能在较短的时间内获得若干算例的已知最好解,求解效率高,收敛速度快,稳定性强. A hybrid heuristic algorithm IACO_MND is proposed and applied to solving the capacitated vehicle routing problem,which combines two meta-heuristics,i.e.,ant colony optimization(ACO) and multiple neighborhood descent(MND).Capacitated vehicle routing problem is a non-deterministic polynomial problem.With the increase of the number of customers,the optional number of vehicle routing solutions will grow exponentially.Ant colony optimization is a meta-heuristics groups algorithm,and it is good at finding area may be the optimal solution.However,multiple neighborhood descent is the locus method,and it is good at finding a better solution in the region.So,take full advantage of the two algorithms can improve the algorithm's search efficiency and performance.First of all,several feasible solutions are built by an insertion based improved ACO(IACO) solution construction method,which is taken as the initial solution of the MND procedure.IACO is have some different with ACO.In our algorithm,a distance-based greedy method is used to create a strong feasible solution.Then one heuristic based on backpack is used to create a weakly feasible solution.We also make some improvement in local pheromone update and global pheromone update.During the MND procedure,three different neighborhood structures,i.e.,insertion,swap and 2-opt are successively used.Computational results on the benchmark problems with the size ranging from 20 to 100,show that the proposed hybrid algorithm can find the best known solution for some problems in a short time,which indicates that the proposed IACO_MND outperforms other algorithms in literatures.However,we also find some problem in the experimental procedure.First one is the execution time increases significantly as the model of the increasing trend.That is because we carry out local search in each iteration.Second one is the algorithm iterations is less,and we think that is because we can obtained the better solution after several iterations,but it will lead to we cannot make full use of the advantages of ACO.In the further,we will further balance the advantage of the ACO and MND.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期91-98,共8页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61003066 61070033) 教育部博士点基金(20090172120035) 中央科研业务费(2009ZM0052) 广东省自然科学基金(251009001000005) 广东省科技计划(2010B050400011 2010B080701070 2008B080701005) 广东省哲学社会科学规划"十一五"规划项目(08O-01) 信息安全国家重点实验室开放课题基金(04-01)
关键词 车辆路径问题 蚁群优化算法 多邻域下降搜索 vehicle routing problem,ant colony optimization,multiple neighborhood descent
  • 相关文献

参考文献18

  • 1Smolenskii G A, Agranovskaya A I. Sov Phy Tech Phy,1958, (3): 380
  • 2Takahashi S,Ochi A. Key Eng Mater,1992,66-67:247
  • 3曲喜新.电容器的新进展[J].电子元件,1996(2):1-8. 被引量:2
  • 4田增英.来自西方的知识-精密陶瓷的应用(第1版)[M].北京:科学普及出版社,1993.283.
  • 5Nomura S,Uchino K J. Ferroelectrics,1982,41:117
  • 6Chen J ,Chan H M ,Harmer M P. J Am Ceram Soc, 1989,72(2):593
  • 7Lin L,Wu T. AM Ceram Soc,1990,73(5):1253
  • 8K F, Gronalt M, Hartl R F, et al. ants for the vehicle routing problem. ions of Evolutionary Computing, Ber Springer, 2002.
  • 9Jiang Fuming, Kojima,et al. Appl Phys Lett, 2001,79 (24):3938
  • 10Winter ,Michael R. J Am Ceram Soc, 2001,84 (2): 314

二级参考文献18

  • 1杨祖培 周欣山 等.0.pPb(Mg1/3Nb2/3)O3-0.2PbTiO3粉末的研究[J].功能材料,1998,29:526-529.
  • 2[1]Swartz S L, Shrout T R, Schulze W A, et al. J. Am. Ceram. Soc., 1984, 67: 311-315.
  • 3[2]Lejeune M, Boilot J P. J. Am. Ceram. Soc., 1985, 20: 493-499.
  • 4[3]Dong Heon Kang, Ki Hyun Yoon. Ferroelectrics, 1988, 87: 255-264.
  • 5[4]Lejeune M, Boilot J P. Am. Ceram. Soc. Bull., 1986, 64 (4): 679-682.
  • 6[5]Koichiro Tsuzuku, Masayuki Fujimoto. J. Am. Ceram. Soc., 1994, 77 (6): 1451-1456.
  • 7[6]Fr é d é ric Chaput, Jean-Pierre Boilot, et al. J. Am. Ceram. Soc., 1989, 72 (8): 1335-1357.
  • 8[7]Tomoaki Futakuchi, et al. Jpn. J. Appl. Phys., 1996, 35: 5113-5116.
  • 9[8]Swartz S L, Shrout T R. Mat. Res. Bull., 1982, 17: 1245-1250.
  • 10[9]Shrout T R, Halliyal A. Am. Ceram. Soc. Bull., 1987, 66: 704-711.

共引文献8

同被引文献47

  • 1肖健梅,李军军,王锡淮.求解车辆路径问题的改进微粒群优化算法[J].计算机集成制造系统,2005,11(4):577-581. 被引量:49
  • 2邵春福,熊志华,姚智胜.道路网短时交通需求预测理论、方法及应用[M].北京:清华大学出版社,2011.
  • 3姜昌华,戴树贵,胡幼华.求解车辆路径问题的混合遗传算法[J].计算机集成制造系统,2007,13(10):2047-2052. 被引量:33
  • 4Azi N, Gendreau M, Potvin J Y. An adaptive large neighborhood search for a vehicle routing problem with multiple routes[J] . Computers & Operations Research, 2014, 41:167-173.
  • 5Michallet J, Prins C, Amodeo L, et al. Multi-start iterated local search for the periodic vehicle routing problem with time windows and time spread constraints on services[J] . Computers & Operations Research, 2014, 41:196-207.
  • 6Reed M, Yiannakou A, Evering R. An ant colony algorithm for the multi-compartment vehicle routing problem[J] . Applied Soft Computing, 2014, 15:169-176.
  • 7Yao Baozhen, Hu Ping, Zhang Mingheng, et al. Improved ant colony optimization for seafood product delivery routing problem[J] . PROMET-Traffic & Transportation, 2014, 26(1):1-10.
  • 8Wu Wei-qin, Tian Yu, Quan Jing, et al. An improved label heuristic algorithm for multi-attribute vehicle routing problem[C] //Proc of International Conference on Management Science and Engineering. [S. l.] :IEEE Press, 2013:248-257.
  • 9KARABOGA D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri: Eroiyes University, 2005.
  • 10SINGH A. An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem[J]. Applied Soft. Computing, 2009, 9(2): 625-631.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部