期刊文献+

一种新的黎曼流形学习方法 被引量:2

A novel algorithm for Riemannian manifold learning
下载PDF
导出
摘要 本文提出一种新的黎曼流形学习方法,在学习输入数据的低维流形结构的同时保持了输入数据与输出数据间的同态关系.该方法的主要思想来源于曲线坐标系中协变坐标分量的几何表达,通过把这种几何表达方式转换应用于具有流形结构的输入数据集,能够分步、线性地直接计算出它们在嵌入空间中的低维坐标.在计算的过程中使用Dijkstra算法计算各点之间的最短距离,并使用了黎曼微分几何中的一些基本概念.实验仿真分析结果表明了算法的有效性. We present a novel method for Riemannian manifold learning,which identifies the low-dimensional manifold-like structure present in a set of data points in a possibly high-dimensional space with homomorphism contained.The main idea is derived from the concept of covariant components in Curvilinear coordinates system.We translate this idea to a cloud of data points in order to calculate the coordinates of the points directly in a transparent way.Our implementation currently uses Dijkstra's algorithm for shortest paths in graphs and some basic concepts from Riemannian differential geometry.Experimental results show the effectiveness of the algorithm.
出处 《南京大学学报(自然科学版)》 CSCD 北大核心 2012年第1期108-114,共7页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(60972114)
关键词 同态 黎曼流形学习 曲线坐标系 homomorphism,Riemannian manifold learning,curvilinear coordinates
  • 相关文献

参考文献10

  • 1Seung H, Lee D. The manifold ways of percep- tion. Science, 2000, 290: 2268-2269.
  • 2Brum A, Westin C F, Herberthson M, et al. Fast manifold learning based on Riemannian normal coordinates. Proceedings of the 14^th Scandinavian Conference on Image Analysis, Joensuu, Finland, 2005.
  • 3Roweis S, Saul L. Nonlinear dimensionality re- duction by locally linear embedding. Science, 2000, 290: 2323-2326.
  • 4Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representa- tion. Neural Computation, 2003, 15 ( 6 ) 1373--1396.
  • 5杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 6Tennenbaum J, Silva V D, Langford J. A glob- al geometric framework for nonlinear dimension- ality reduction. Science, 2000, 29 :2319-2323.
  • 7Min W L, Lu L, He X F. Locality pursuit em- bedding. Pattern Recognition, 2004, 37 (4): 781-788.
  • 8Zhang Z Y, Zha H Y. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal of Scientific Computing, 2004, 26(1):313-338.
  • 9Arfken G. "Curvilinear coordinates"" and "dif- ferential vector operators". Mathematical Meth- ods for Physicists. The 3^nd Edition. Orlando: Academic Press, 1985, 86-94.
  • 10Lin T, Zha H B. Riemannian manifold learn- ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30: 796-809.

二级参考文献14

  • 1Seung HS, Lee DD. The manifold ways of perception. Science, 2000,290(5500):2268-2269.
  • 2Donoho DL, Grimes C. Hessian Eigenmaps: New locally linear embedding techniques for high-dimensional data. Proc. of the National Academy of Sciences of the United States of American, 2003,100(10):5591-5596.
  • 3.[EB/OL].http://www.cse.msu.edu/~lawhiu/manifold/,.
  • 4Tenenbaum J, Silva VD, Langford J. A global geometric framework for nonlinear dimensionality reduction. Science, 2000,290(5500):2319-2323.
  • 5Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000290(5500):2323-2326.
  • 6Belkin M, Niyogi P. Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003,15(6):1373-1396.
  • 7Min WL, Lu L, He XF. Locality pursuit embedding. Pattern Recognition, 2004,37(4):781-788.
  • 8Zhang ZY, Zha HY. Principal manifolds and nonlinear dimensionalty reduction via tangent space alignment. SIAM Journal of Scientific Computing. 2004,26(1):313-338.
  • 9Kambhatla N, Leen TK. Dimension reduction by local principal component analysis. Neural Computation, 1997,9(7): 1493-1516.
  • 10Pelleg D, Moore A. X-means: Extending K-means with efficient estimation of the number of clusters.In: Langley P, ed. Proc. of the 17th Int'l Conf. on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2000. 727-734.

共引文献35

同被引文献26

  • 1TENENBAUM J B, de SILVA V, LANGFORD J C. A global geo- metric framework for nonlinear dimensionality reduction [ J]. Sci- ence, 2000, 290(5500): 2319-2323.
  • 2ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by lo- cally linear embedding [J]. Science, 2000, 290(5500): 2323- 2326.
  • 3BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality re- duction and data representation [ J]. Neural Computation, 2003, 15 (6): 1373 -1396.
  • 4ZHANG Z, ZHA H. Principal manifolds and nonlinear dimensional- ity reduction via local tangent space alignment [ J]. SIAM Journal of Scientific Computing, 2004, 26(1): 313-338.
  • 5HINTON G E, SALAKHUTDINOV R R. Reducing the dimensional- ity of data with neural networks [ J]. Science, 2006, 313(5786) : 504 - 507.
  • 6de SILVA V, TENENBAUM J B. Global versus local methods in nonlinear dimensionality reduction [ C]//Proceedings of the 6th An- nual Conference on Neural Information Processing Systems. Cam- bridge: MIT Press, 2003:705-712.
  • 7TENKINS C O, MATARIC J M. A spatio-temporal extension to ISO- MAP nonlinear dimension reduction [ C]//ICML '04: Proceedings of the 21st International Conference on Machine Learning. New York: ACM Press, 2004:441-448.
  • 8ZENG X, LUO S, WANG J. Auto-associative neural network system for recognition [ C]// ICMLC '07: Proceedings of the 6th Interna- tional Conference on Machine Learning and Cybernetics. Piscat- away, NJ: IEEE Press, 2007:2885-2890.
  • 9ERHAN D, PIERRE-ANTOINE M, BENGIO Y, et al. The diffi- culty of training deep architectures and the effect of unsupervised pre-training [ C]//AISTATS '09: Proceedings of the 12th Interna- tional Conference on Artificial Intelligence and Statistics. Clearwa- ter: JMLR, 2009: 153-160.
  • 10SHI L, GU J. A fast manifold learning algorithm [ J]. Information Technology Journal, 2012, 11(3): 380-383.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部