期刊文献+

带交叉扩散项的捕食模型非常数正解的存在性 被引量:8

The Existence of Nonconstant Positive Solution for a Prey-Predator Model with Cross-Diffusion
下载PDF
导出
摘要 讨论了一类具有交叉扩散项的捕食食饵模型正解的存在性。利用最大值原理和Harnack不等式给出了模型正解的先验估计,运用积分性质证明了非常数正解的不存在性,再利用度理论得到了非常数正解存在的充分条件。 The existence of positive solutions is discussed for a prey-predator model with cross-diffusion.The prior estimate to the positive solutions of the model is given by means of maximum principle and Harnack inequality.By using the integral property,the nonexistence of the nonconstant positive solutions is proved.The sufficient conditions for the existence of nonconstant positive solutions are obtained.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期14-18,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(10971124) 教育部高等学校博士点基金资助项目(200807180004) 宝鸡文理学院重点资助项目(Zk10116)
关键词 交叉扩散 非常数正解 度理论 cross-diffusion nonconstant positive solution degree theory
  • 相关文献

参考文献16

  • 1CHEN W Y, PENG R. Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model [J]. J Math Anal Appl, 2004, 291 : 550 -564.
  • 2DU Y H, LOU Y. S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model [J]. J Differential Equation, 1998, 144: 390- 440.
  • 3KUTO K. Stability of steady-state solutions to a preypredator system with cross-diffusion [ J ]. J Differential Equation, 2004, 197 : 293 -314.
  • 4KUTO K, YAMADA Y. Multiple coexistence states for a prey-predator system with cross-diffusion [ J ]. J Differential Equation, 2004, 197:315 - 348.
  • 5LOU Y, NI W M. Diffusion vs cross-diffusion: an elliptic approach [J]. J. Differential Equation, 1999, 154:157 - 190.
  • 6PANG P Y H, WANG M X. Strategy and stationary pattern in a three-species predator-prey model [ J ]. J Differential Equation, 2004, 200:245 - 273.
  • 7SCHREIBER S J. Coexistence for species sharing a predator [J]. J Differential Equation, 2004, 196:209 - 225.
  • 8WANG M X. Non-constant positive steady states of Sel' kov model [ J]. J Differential Equation, 2003, 190:600 - 620.
  • 9PENG R, WANG M X. Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model [ J ]. Appl Math Lett, 2007, 20 : 664 - 670.
  • 10PENG R, WANG M X. Positive steady states of the Holling-Tanner prey-predator model with diffusion [ J]. Proe Roy Soe Edinburgh (A), 2005, 135:149-164.

同被引文献59

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部