摘要
为了进一步发展和完善四阶边值问题正解的存在性理论,研究了下面的四阶边值问题u(4)=f(t,u(t),u'(t),u″(t),u'''(t)),0≤t≤1u'(0)=u″(0)=u'''(0)=0,ku(1)=u'''(1)其中,f:[0,1]×R4→[0,+∞)连续。利用锥上不动点定理得到了该四阶边值问题正解的存在性及多重性。推广了某些已知的结果。
In order to develop and improve the theory about existence of positive solutions of fourth order boundary value problem,the following fourth order boundary value problem {u(4)=f(t,u(t),u′(t),u″(t),u'''(t)),0≤t≤1u′(0)=u″(0)=u'''(0)=0,ku(1)=u'''(1) is considered,where f:×R4→[0,+∞) is continuous.By use of the fixed point theorem in cone,the existence and multiplicity of positive solutions are obtained to the above boundary value problem.The results generalize some recent ones.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第1期25-29,共5页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金资助项目(10771212)
徐州师范大学自然科学基金资助项目(09KLB03)
关键词
四阶边值问题
正解的存在性
不动点定理
锥
fourth order boundary value problem
the existence of positive solutions
fixed point theorem
cone