期刊文献+

一种快速的零空间算法 被引量:3

A Fast Implementation of Null Space Based Algorithm
下载PDF
导出
摘要 为了进一步提高零空间算法的运行效率,提出了一种新的快速的零空间算法(FINBSA).FINBSA不需要进行特征值分解或奇异值分解,而只需一次正交三角(QR)分解就可以求得最佳投影矩阵,使得FINBSA的算法复杂度比现有的零空间算法要低.在PIE人脸库上的实验结果表明,FINBSA的识别率与现有的零空间算法相同,但是远比现有的零空间算法要高效,尤其是在训练样本数较多时,FINBSA的运行时间比现有零空间算法节省了100%以上. To improve the efficiency of null space based algorithm,a new fast implementation of null space based algorithm(FINBSA) is presented.FINBSA is carried out without any eigen-decomposition computing and singular value decomposition,by only one step of orthogonal-triangular(QR) decomposition to obtain the optimal projection matrix.Thus the computational complexity of this algorithm gets much lower than that of the other null space based ones.The experiments on PIE face database demonstrate that the recognition accuracy of FINBSA is equivalent to the other null space based algorithms,but FINBSA is more efficient especially for large size of training samples,and the running period of FINBSA is over 100% lower than that of the other existing null space based algorithms.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第2期59-63,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60873151)
关键词 特征提取 线性鉴别分析 零空间线性鉴别分析 正交三角分解 人脸识别 feature extraction linear discrimination analysis null space based linear discrimination analysis orthogonal-triangular decomposition face recognition
  • 相关文献

参考文献11

  • 1RAUDYS S J, JAIN A K. Small sample size effects in statistical pattern recognition: recommendations for practitioners[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1991, 13(3): 252-264.
  • 2MARTINEZ A M, KAK A C. PCA versus LDA[J].IEEE Trans on Pattern Analysis and Machine Intelli- gence, 2001, 23(2): 228-233.
  • 3BELHUMEOUR P N, HESPANHA J P, KRIEG- MAN D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.
  • 4YU Hua, YANG Jie. A direct LDA algorithm for high-dimensional data with application to face recognition [J]. Pattern Recognition, 2001, 34(10): 2067- 2070.
  • 5BrownKE.升举法采油工艺.卷四[M].北京:石油工业出版社,1990..
  • 6杨健,杨静宇,等.具有统计不相关性的图像投影鉴别分析及人脸识别[J].计算机研究与发展,2003,40(3):447-452. 被引量:39
  • 7陈家琅.石油企业两相管流[M].北京:石油工业出版社,1989..
  • 8Brown K E,Lea J F. Nodal systems analysis of oil and gas wells. JPT, 1985 ; (10)
  • 9GOLUB G H, LOAN C F V. Matrix computations [M]. 3rd ed. Baltimore, Maryland, USA: The Johns Hopkins University Press, 1996 : 253-254.
  • 10CHU Delin, THYE G S. A new and fast implementation for null space based linear discriminant analysis [J]. Pattern Recognition, 2010, 43(4) : 1373-1379.

二级参考文献9

  • 1丁学仁 蔡庙可.工程中的矩阵理论[M].天津:天津大学出版社,1995.115-118.
  • 2A Pentland. Looking at people: Sensing for ubiquitous and wearable computing. IEEE Trans on Pattern Anal Machine Intell, 2000, 22(1): 107~119
  • 3Peter N Belhumeur, Joao P Hespanha, David J Kriengman. Eigenfaces vs Fisherfaces: Recognition using class specific linear projection. IEEE Trans on Pattern Anal Machine Intell, 1997, 19(7): 711~720
  • 4Chengjun Liu, Harry Wechsler. A shape-*$and texture-based enhanced Fisher classifier for face recognition. IEEE Trans on Image Processing, 2001, 10(4): 598~608
  • 5Jian Yang, J Y Yang. Optimal FLD algorithm for facial feature extraction. SPIE Proc Intelligent Robots and Computer Vision XX: Algorithms, Techniques, and Active Vision. 2001
  • 6Li-Fen Chen, H-Y Mark Liao, M-T Ko et al. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition, 2000, 32: 317~324
  • 7Zhong Jin, J Y Yang, Z S Hu et al. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001, 33(7): 1405~1416
  • 8Liu K, Cheng Y-Q, Yang J-Y et al. Algebraic feature extraction for image recognition based on an optimal discriminant criterion. Pattern Recognition, 1993, 26(6): 903~911
  • 9杨健,杨静宇,金忠.最优鉴别特征的抽取及图像识别[J].计算机研究与发展,2001,38(11):1331-1336. 被引量:21

共引文献39

同被引文献34

  • 1於宗俦.方差——协方差分量极大似然估计的通用公式[J].测绘学报,1994,23(1):6-13. 被引量:10
  • 2王新洲,刘经南,陶本藻.稳健最优不变二次无偏估计[J].武汉测绘科技大学学报,1995,20(3):240-245. 被引量:11
  • 3刘长建,马高峰,乔书波.含有粗差或系统误差的方差分量估计[J].测绘通报,2005(10):7-8. 被引量:3
  • 4崔希璋,於宗俦,陶本藻.等.广义测量平差(新版)[M].武汉:武汉大学出版社,2005.
  • 5AMIRI-SIMKOOEI A R. Least squares Variance Component Estimation Theory and GPS Applications [D]. Delft: Delft University of Technology, 2007.
  • 6PENG Junhuan, SHI Yun, LI Shuhui,et al. MINQUE of Variance-Covariance Components in Linear Gauss-Markov Models [J]. Journal of Surveying Engineering, 2011, 137 (4) !129-139.
  • 7CROCETTO N, GATTI M, RUSSO P. Simplified Formulae for the BIQUE Estimation of Variance Components in Dis- ]unctive Observation Groups [J]. Journal of Geodesy, 2000, 74(6): 447-457.
  • 8SJOBERG L E. Non-negative Variance Component Esti mation in the Gauss Helmert Adjustment Model [ J ]. Manuscripta Geodaetica, 1984(9) : 247-280.
  • 9ESHAGH M, SJOBERG L E. The Modified Best Quadratic Unbiased Non-Negative Estimator ( MBQUNE ) of Variance Components [J]. Studia Geophysica et Geodaetica, 2008, 52(3): 305-320.
  • 10YU Zongchou. A Universal Formula of Maximum Likelihood Estimation of Variance-eovariance Components [ J ]. Journal of Geodesy, 1996, 70(4): 233-240.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部