期刊文献+

Growth and Physiological Response of Organs of Phragmites australis to Different Water Compensation in Degraded Wetlands 被引量:1

Growth and Physiological Response of Organs of Phragmites australis to Different Water Compensation in Degraded Wetlands
原文传递
导出
摘要 To study the effect of different water compensation on growth and physiology of reed in degraded wetlands,three water treatments in the field were conducted to test the height and photosynthesis of reed,the ions and soluble sugar contents of different organs.In the controls(without extra water compensation for 10 years),the height of reed was only 50 cm,the net photosynthetic rate,stomatal conductance,the intercellular CO2 concentration and transpiration rate were very low.The contents of Na + and Clin rhizome were higher than those in other organs.Discontinuous water compensation(continuous for 8 years,then stopped for 2 years)increased the height(2.1-fold),the net photosynthetic rate(41.8%),stomatal conductance(1.8-fold),transpiration rate(1.3-fold)of reed(Phragmites australis),and decreased the content of Na + (62.3%)and Cl- (71.1%)of rhizome significantly.Continuous water compensation(continuous for 10 years)increased the height(3.2-fold),the net photosynthetic rate(104%),stomatal conductance(2.4-fold),transpiration rate(1.5-fold)of reed,and decreased Na + (82.5%)and Cl - (64.7%)contents in rhizome, then accumulated the K+ ,H2PO4-,SO42- and soluble sugar contents significantly in rhizome.Interrupting water compensation led to the decrease of height(25.3%),the net photosynthetic rate(30.7%),stomatal conductance(17.3%) and increase of Na + (1.16-fold)in rhizome when comparing to the continuous water compensation.These results showed that recovering the degraded reed wetlands needed continuous water compensation yearly to promote reed growth.The organs of reed had corresponding physiological response characteristic to the different water compensation condition.Under long-time dry and waterlogging condition,the rhizomes both helped reed to adapt located environment,by enriching the ions such as Na+ ,Cl- ,and K+ ,H2PO4-,SO42- ,respectively. To study the effect of different water compensation on growth and physiology of reed in degraded wetlands,three water treatments in the field were conducted to test the height and photosynthesis of reed,the ions and soluble sugar contents of different organs.In the controls(without extra water compensation for 10 years),the height of reed was only 50 cm,the net photosynthetic rate,stomatal conductance,the intercellular CO2 concentration and transpiration rate were very low.The contents of Na + and Clin rhizome were higher than those in other organs.Discontinuous water compensation(continuous for 8 years,then stopped for 2 years)increased the height(2.1-fold),the net photosynthetic rate(41.8%),stomatal conductance(1.8-fold),transpiration rate(1.3-fold)of reed(Phragmites australis),and decreased the content of Na + (62.3%)and Cl - (71.1%)of rhizome significantly.Continuous water compensation(continuous for 10 years)increased the height(3.2-fold),the net photosynthetic rate(104%),stomatal conductance(2.4-fold),transpiration rate(1.5-fold)of reed,and decreased Na+ (82.5%)and Cl - (64.7%)contents in rhizome, then accumulated the K+ ,H2PO4-,SO42- and soluble sugar contents significantly in rhizome.Interrupting water compensation led to the decrease of height(25.3%),the net photosynthetic rate(30.7%),stomatal conductance(17.3%) and increase of Na + (1.16-fold)in rhizome when comparing to the continuous water compensation.These results showed that recovering the degraded reed wetlands needed continuous water compensation yearly to promote reed growth.The organs of reed had corresponding physiological response characteristic to the different water compensation condition.Under long-time dry and waterlogging condition,the rhizomes both helped reed to adapt located environment,by enriching the ions such as Na+ ,Cl- ,and K+ ,H2PO4-,SO42- ,respectively.
出处 《湿地科学》 CSCD 北大核心 2012年第1期23-31,共9页 Wetland Science
基金 National Natural Science Foundation of China(31100403) The Development of Science and Technology Plan Projects of Jilin Province(20080402-1) Agriculture Comprehensive Development Projects of Jilin Province(01-0222088202) Key Project of National Key Technology R&D Program in 11th Five-year Plan of China(2009BADB3B02)
关键词 degraded reed wetlands water compensation PHOTOSYNTHESIS IONS soluble sugar degraded reed wetlands water compensation photosynthesis ions soluble sugar
  • 相关文献

参考文献17

二级参考文献231

共引文献460

同被引文献15

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部