摘要
为提高井下矿井机车运输效率,以所有机车平均速度最高为目标建立了井下单轨运输系统模型。使用改进后的遗传算法来求解机车运行的最优组合,改进后的遗传算法能避免改进前遗传算法收敛过早,陷入局部极值点的缺点。实验结果表明,经过优化后,井下单线运输系统运输效率有较大程度提高,且溜井完全有能力为所有机车提供服务,基本不会出现排队等待装矿的现象。
In order to improve carriage efficiency of shaft locomotive, the model of underground monorail transportation system was build with the target to increase the average speed of all locomotives, and the advanced genetic algorithm is proposed for obtaining the optimal combination of the locomotive running. The advanced genetic algorithm could avoid the premature convergence of the traditional genetic algorithm falling to the local extremum. The experiment results indicated that the efficiency of monorail transportation was greatly improved after optimization, and the ore-pass owned a full capacity to satisfy the requirement of locomotive transportation, without locomotive waiting for loading ore under normal circumstances.
出处
《金属矿山》
CAS
北大核心
2012年第2期124-126,共3页
Metal Mine
关键词
平均速度
单轨运输
遗传算法
Average speed, Monorail transportation, Genetic algorithm