摘要
给出了非光滑凸半无限规划问题的最优解的性质。该问题涉及了拉格朗日鞍点的概念。为了能给出最优性的必要条件,局部和全局的约束品性是给定的。这些约束品性基于F-M性质,在通过线性化可行域得到的特定系统中起着重要作用。证明了Slater品性隐含了这些品性。
This paper gives characterizations of optimal solutions to the non-differentiable convex semi-infinite programming problem,which involve the notion of Lagrangian saddle-point.Giving the necessary conditions for optimality,the local and global constraint qualifications are established.These constraint qualifications are based on the property of Farkas-Minkowski,which plays an important role in relation to certain systems obtained by linearization feasible set.It proved that Slater's qualification implies those qualifications.
出处
《重庆理工大学学报(自然科学)》
CAS
2012年第1期119-126,共8页
Journal of Chongqing University of Technology:Natural Science
关键词
半无限规划
凸函数
拉格朗日鞍点
约束品性
最优性条件
F-M系统
semi-infinite programming
convex function
Lagrangin saddle-point
constraint qualifications
optimality condition
Farkas-Minkowski system