期刊文献+

非光滑凸半无限规划的最优性条件

Condition of Optimality in Semi-infinite Programming for Non-smooth Convex
下载PDF
导出
摘要 给出了非光滑凸半无限规划问题的最优解的性质。该问题涉及了拉格朗日鞍点的概念。为了能给出最优性的必要条件,局部和全局的约束品性是给定的。这些约束品性基于F-M性质,在通过线性化可行域得到的特定系统中起着重要作用。证明了Slater品性隐含了这些品性。 This paper gives characterizations of optimal solutions to the non-differentiable convex semi-infinite programming problem,which involve the notion of Lagrangian saddle-point.Giving the necessary conditions for optimality,the local and global constraint qualifications are established.These constraint qualifications are based on the property of Farkas-Minkowski,which plays an important role in relation to certain systems obtained by linearization feasible set.It proved that Slater's qualification implies those qualifications.
作者 戴素芬
机构地区 重庆师范大学
出处 《重庆理工大学学报(自然科学)》 CAS 2012年第1期119-126,共8页 Journal of Chongqing University of Technology:Natural Science
关键词 半无限规划 凸函数 拉格朗日鞍点 约束品性 最优性条件 F-M系统 semi-infinite programming convex function Lagrangin saddle-point constraint qualifications optimality condition Farkas-Minkowski system
  • 相关文献

参考文献10

  • 1Ben-Tal A, Kerzner L , Zlobec S. Optimality conditions for convex semi-infinite programming problems [ J ]. Naval Research Logistics Quarterly, 1980,27:413-435.
  • 2Ben-Tal A, Rosinger E E, Ben-Israel A. A Helly-type theorem and semi-infinite programming[ M ]//Coffman C V, Fix, eds G J. Constructive approaches to mathematical models. New York : Academic Press, 1979 : 127-135.
  • 3Borwein J M. Direct theorems in semi-infinite convex programming[ J]. Mathematical Programming,1981,21:301 -318.
  • 4Duff in R J, Karlovitz L A. An infinite linear program with a duality gap [ J ]. Management Science, 1965, 12:122-134.
  • 5Eremin I I,Astafiev N N. An introduction to the theory of linear and convex programming[ M]. Moscow: [ s. n. ], 1976.
  • 6Goberna M A, Lopez M A, Pastor J. Farkas-Minkowski systems in semi-infinite programming[ J ]. Applied Mathematics and Optimization, 1981,7:295-308.
  • 7Jeroslow R G. Uniform duality in semi-infinite convex optimization [ J ]. Mathematical Programming, 1983,27.
  • 8Pshenichnyi B N. Necessary conditions for an extremum[ M ]. New York: Dekker, 1971.
  • 9Rockafellar R T, Convex analysis [ M ]. Princeton, NJ: Princeton University Press, 1970.
  • 10Lopez M A, Vercher E. Optinality conditions for nondifferentiable convex semi-infinite programming[J]. Mathwmatial Programming, 1983,27:307-319.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部