期刊文献+

三角晶格Ising模型Monte Carlo模拟的GPU加速算法

GPU Accelerated Monte Carlo Algorithm of Ising Model on Triangular Lattice
下载PDF
导出
摘要 在分析传统Monte Carlo算法的基础上,针对三角晶格Ising模型提出了一种基于GPU的并行模拟方法,大大提高了算法的效率。对1 024×1 024的模型,实现了69倍的加速比。通过该算法所得数据分析模型的临界行为,获得了高精度的临界点βc=0.274 66(1)和临界指数yt=1.01(2),yh=1.875 6(3)。 In the statistical model,the efficiency of most Monte Carlo algorithm reduces quickly near the critical point.In the analysis of traditional local algorithms,a GPU-based parallel simulation algorithm on the triangular lattice Ising model,which greatly improves the efficiency of the Monte Carlo simulation,is raised.For the model with the size of 1 024×1 024,a speedup of 69 is achieved.Besides,the critical behavior is analyzed,a high-precision critical point(βc=0.274 66(1)) and critical exponents(yt= 1.01(2),yh= 1.875 6(3)) of triangular lattice Ising model are obtained,which implies the effectiveness of the GPU algorithm.
机构地区 暨南大学物理系
出处 《科学技术与工程》 北大核心 2012年第4期731-734,739,共5页 Science Technology and Engineering
基金 (10947003 11005048) 暨南大学创新基金(11610413) 中央高校基本科研业务费专项资金(216113144)资助
关键词 GPU CUDA ISING模型 MONTE CARLO模拟 临界行为 GPU CUDA Ising model Monte Carlo algorithm critical behavior
  • 相关文献

参考文献8

  • 1Ising E. Beitrag zur theorie des ferromagnetismus. Z Phys, 1925 ; 31 ( 1 ) :253-258.
  • 2Onsager L. Crystal statistics. I:a two-dimensional model with an order-disorder transition. Phys Rev, 1944 ; 65 ( 3-4 ) : 117-149.
  • 3Swendsen R H, Wang J S. Nonuniversal critical dynamics in Monte Carlo simulations. Phys Rev Lett, 1987 ; 58:86-88.
  • 4Deng Y J, Garoni T M, Sokal A D. Dynamic critical behavior of the worm algorithm for the Ising model. Phys Rev Lett, 2007; 99 : 110601.
  • 5NVIDIA. NVIDIA CUDA C Programming Guide. http://developer. download, nvidia. com/compute/cuda/3- 1/toolkit/docs/NVIDIA_ CUDA_C_ProgrammingGuide_3.1. pdf. 2010.
  • 6Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equations of state calculations by fast computing machines. J Chem Phys, 1953; 21 (6) : 1087-1092.
  • 7Preis T, Virnau P, Paul W, et al. GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model. J Comput Phys, 2009;228 12) :4468-4477.
  • 8Binder K. Finite size scaling analysis of Ising model block distribution functions. Z Phys B, 1981 ;43(2) :119-140.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部