期刊文献+

基于LVQ神经网络的配电网故障定位方法 被引量:48

LVQ neural network approach for fault location of distribution network
下载PDF
导出
摘要 分析了配电网单相接地故障定位的难点及利用行波精确定位的问题。在利用故障点反射行波信号确定配电网单相接地故障距离的基础上,重点研究了应用学习向量量化(Learn Vector Quantization,LVQ)神经网络方法,利用该方法对不同分支的反射行波进行了特征提取与模式识别,实现了故障分支的判别,从而实现了精确定位。为了明确LVQ神经网络方法在精确定位方面的优越性,同时利用传统的BP(Back-Propagation)神经网络方法进行了比较。ATP-EMTP和Matlab软件对LVQ和BP两种神经网络方法进行了仿真验证;结果证明,在解决配电网单相接地故障精确定位问题方面,LVQ神经网络的效果优于BP神经网络。 According to the analysis on the difficulties of single phase grounding fault and the shortcomings of precise location using traveling wave signal in distribution network, a fault location method integrating the C-type of traveling wave location method with LVQ (Learn Vector Quantization) neural network is put forward. The aim is to combine different location methods to improve the accuracy of fault location. LVQ Neural Network is studied in this paper. The ability of feature extraction and pattern recognition is the characteristics of LVQ neural network, and it is applied to analyze reflected wave signals in different branches. In order to demonstrate the superiority of LVQ neural network, a classical BP (Back-Propagation) neural network has been developed to solve the same problem for comparison. The simulation results of ATP-EMTP and Matlab show that the LVQ neural network is quite effective and superior to BP neural network in fault location.
出处 《电力系统保护与控制》 EI CSCD 北大核心 2012年第5期90-95,共6页 Power System Protection and Control
关键词 配电网 故障定位 C型行波测距法 LVQ神经网络 BP神经网络 distribution network fault location C-type of traveling wave location method LVQ neural network BP neural network
  • 相关文献

参考文献13

  • 1覃剑.输电线路单端行波故障测距的研究[J].电网技术,2005,29(15):65-70. 被引量:86
  • 2Bo Z Q. Accurate fault location technique for distribution system Using fault-generated high-frequency transient voltage signals[J]. IEE Proc-Gener, Transm, and Distrib, 1999, 146(1): 73-79.
  • 3Aurangzeb M, Crossley P A, Gale P. Fault location using the high frequency traveling waves measured at a single location on a transmission line developments in power system protection[C]//Seventh International Conference on(IEE), April 2001: 403-406.
  • 4Yang C L, Okamoto H, Yokoyama A, et al. Expert system for fault section estimation of power system using time sequence information[J]. Electrical Power & Energy Systems, 1992, 14: 225-232.
  • 5Ernesto Vazquez M, Oscar L, Chacon M. An on line expert system for fault section diagnosis in power system [J]. IEEE Transactions on Power Systems, 1997, 12(1): 357-362.
  • 6Wen F S, Han Z X. Fault section estimation in power systems using a genetic algorithm[J]. Electric Power Systems Research, 1995, 34(3): 165-1172.
  • 7秦代春,周林,郭珂,刘强,方堃.一种小波神经网络的电能质量信号去噪新方法[J].电力系统保护与控制,2010,38(13):88-93. 被引量:23
  • 8李孝全,庄德慧,张强.基于粗糙径向基神经网络的电网故障诊断新模型[J].电力系统保护与控制,2009,37(18):20-24. 被引量:19
  • 9宁薇薇,裴源,刘立彦,曾喆昭.基于傅立叶基函数神经网络算法的电力系统间谐波分析方法[J].电力系统保护与控制,2008,36(12):12-16. 被引量:8
  • 10Thukaram D, Khincha H P, Vijaynarasimha H P. Artificial neural network and support vector machine approach for locating faults in radial distribution systems[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 710-721.

二级参考文献63

共引文献396

同被引文献453

引证文献48

二级引证文献414

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部