期刊文献+

基于MAP估计和广义高斯分布的SAR图像边缘比率检测方法

Ratio-based Edge Detection for SAR Imagery Using MAP Estimation and Generalized Gaussian Distribution
原文传递
导出
摘要 合成孔径雷达(SAR)图像的低信噪比和乘性相干斑噪声给SAR图像的边缘检测带来了极大的困难。通过引入广义高斯(GG)分布作为局部均值功率的先验分布模型,给出了局部均值功率在最大后验概率(MAP)意义下的最优估计,进而提出一种新的SAR图像边缘比率检测算子。利用以梅林变换为基础的对数累积量(MoLC)方法估计GG分布的参数,在此基础上给出一种局部均值功率MAP估计和GG分布参数估计的联合迭代求解方法。利用SAR实测数据对本文提出的边缘检测算子进行仿真验证,并将其与平均比率(RoA)算子和指数加权均值比(ROEWA)算子进行了对比,结果表明该算子可以有效克服相干斑噪声的影响,边缘定位准确且虚假边缘明显减少。 The low signal-to-noise ratio and multiplicative speckle noise make edge detection extremely difficult for synthetic aperture radar(SAR) imagery.In this paper a generalized Gaussian(GG) distribution is used as the a prior model for the local mean power,and an optimal estimation for it in the sense of maximum a posterior(MAP) is thus given.A novel ratio-based edge operator for SAR imagery is accordingly developed.The method of log-cumulants(MoLC) based on Mellin transform is employed to estimate the GG distribution parameters,based on which a method of joint and iterative estimation of the local mean power and GG distribution parameters is proposed.The performance of the proposed edge operator is tested using real SAR data,and compared with the ratio of averages(RoA) and ratio of exponentially weighted averages(ROEWA) operators.Experimental results show that the proposed operator can effectively extract edges and suppress speckle noise.
出处 《航空学报》 EI CAS CSCD 北大核心 2012年第2期315-326,共12页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61032001 61002045)~~
关键词 边缘检测 最大后验概率估计 广义高斯分布 合成孔径雷达 比率 edge detection maximum a posterior estimation generalized Gaussian distribution synthetic aperture radar ratio
  • 相关文献

参考文献21

  • 1Touzi R, Lopes A, Bousquet P. A statistical and geometrical edge detector for SAR images. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(6): 764-773.
  • 2Oliver C J, Blacknell D, White R G. Optimum edge detec tion in SAR. IEE Proceedings Radar, Sonar Navigation, 1996, 143(1): 31-40.
  • 3侯彪,刘佩,焦李成.基于改进Wedgelet变换的SAR图像边缘检测[J].红外与毫米波学报,2009,28(5):396-400. 被引量:3
  • 4赵凌君,贾承丽,匡纲要.SAR图像边缘检测方法综述[J].中国图象图形学报,2007,12(12):2042-2049. 被引量:36
  • 5Fjortoft R, Lopes A, Marthon P, et al. An optimal mul tiedge detector for SAR image segmentation. IEEE Trans actions on Geoscience and Remote Sensing, 1998, 36(3) :793-802.
  • 6Oller G, Marthon P, Rognant L. Edge detection and extraction for SARimages. Proceedings of 2003 IEEE Inter national Geoscienee and Remote Sensing Symposium. 2003: 4004-4006.
  • 7Jia C L, Zhou X G, Zhao L J, et al. A modified ROEWA method for edge detection in SAR images. Proceedings of International Conference on Radar. 2006: 1-4.
  • 8Ranjani J J, Gokila M, Thiruvengadam S J. Edge detection in speckled SAR images with improved ROEWA. Proceedings of Indian Conference on Computer Vision, Graphics & Image Processing. 2008: 644-649.
  • 9Oliver C, Quegan S. Understanding synthetic aperture ra darimages. 2nd ed. Raleigh: Scitech Press, 2004: 96- 135.
  • 10Frery A C, Muller H J, Yanasse C C F, et al. A model for extremely heterogeneous clutter. IEEE Transactions onGeoscience and Remote Sensing, 1997, 35(3): 648- 659.

二级参考文献50

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部