期刊文献+

基于挥手行为的性别识别方法

Gender recognition based on hand waving action
下载PDF
导出
摘要 提出利用挥手行为进行性别识别的方法.使用基于含时切平面的方法检测周期,用平均剪影表征一个周期序列的挥手行为,PCA降维后利用支持向量机进行分类.实验在60人(30男,30女)的数据库上进行.实验结果表明,用提出的算法从三种挥手行为(挥左手、挥右手、挥双手)中识别出性别的正确率达到89.83%或更高.实验还将人体分成5部分:手臂、头肩、腰、臀和腿,研究人体各组成部分对性别识别的贡献.93个对比实验结果表明,去掉手臂部分识别率下降最快;只通过手臂识别正确率达到86.44%或更高;使用两部分识别,手臂+臀部是最优组合;使用三部分识别,手臂+头肩+腰是最优组合. A method of gender classification based on human hand waving action was presented.A time-involved-cutting-plane based period detection approach was first applied and then a hand waving sequence of a period was represented by the averaged silhouette(AS).After dimensionality reduction by PCA,a support vector machine(SVM) was used for the classification.A dataset containing 60 people(30 males and 30 females) was used for the experiments.The experimental results show that applying the proposed algorithm the gender recognition from 3 styles of hand waving,i.e.left hand waving,right hand waving and two hands waving,can achieve the correct rate of 89.83% or higher.A numerical analysis of the contributions of different human components was also presented.The human silhouette was segmented into five components,namely the arm,head,shoulder,waist,buttock,and leg.A number of combinations of the components were then used for gender classification.Ninety-three different experimental results show that: the recognition rate drops most rapidly when the arm component is removed;gender recognition from the arm component can reach the correctness rate of 86.44% or higher;when using two components for gender recognition,the arm-buttock combination works best;when using three components for gender recognition,the arm-head and shoulder-waist combination is the best.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2012年第2期92-98,共7页 JUSTC
基金 国家自然科学基金(61075073 61005091) 高等学校博士学科点专项科研基金(20093402110014)资助
关键词 软生物特征识别 挥手行为 性别识别 平均剪影图 soft biometrics hand waving gender recognition average silhouette
  • 相关文献

参考文献32

  • 1Jain A K, Dass A C, Nandakumar K. Can soft biometric traits assist user recognition? [C]// Proceedings of the Storage and Retrieval for Image and Video Databases. Orlando, USA, 2004, 5404: 561-572.
  • 2YuS Q, Tan T N, Huang K Q, et al. A study on gait-based gender classification [J]. IEEE Transactions on Image Processing, 2009, 18(8): 1 905-1 910.
  • 3Li X L, Maybank S J, Yan S C, et al. Gait components and their application to gender recognition [J].IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2008, 38(2) : 145-155.
  • 4Cao L L, Dikmen M, Fu Y, et al. Gender recognition from body [C]//Proceeding of the 16th ACM International Conference on Multimedia. Canada.. ACM Press, 2008: 725-728.
  • 5Pratheepan Y, Condell J, Prasad G. Individual identification from video based on " Behavioural Biometrics" [C]// Behavioral Biometrics for Human Identification: Intelligent Applications, Wang L, Geng X, gds. New York.. Medical Information Science Reference, 2010: 75-100.
  • 6张月.室内人体工程学[M].北京:中国建筑工业出版社,1999:8-30.
  • 7Lacquaniti F, Soechting J. Coordination of arm and wrist motion during a reaching task [J]. Journal of Neuroscience, 1982, 2(4): 399-408.
  • 8Atkeson C G, Hollerbach J M. Kinematic features of unrestrained vertical arm movements[J].Journal of Neuroscience, 1985, 5(9): 2 318-2 330.
  • 9Sergio L E, Ostry D J. Coordination of multiple muscles in two degree of freedom elbow movements [J]. Experimental brain research, 1995, 105(1): 123 137.
  • 10Desmurget M, P61isson D, Rossetti Y, et al. From eye to hand: planning goal-directed movements [J].N euroscience & giobehavioral Reviews, 1998, 22 (6) : 761-788.

二级参考文献21

  • 1Wang L, Hu W, Tan T. Recent developments in human motion analysis. Pattern Recognition,2003,36(3):585~601
  • 2Phillips J, Moon H, Rizvi S, Rause P. The FERET evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090~1104
  • 3Jain A, Bolle R, Pankanti S. Biometrics: Personal Identification in Networked Society. Boston:Kluwer Academic Publishers, 1999
  • 4Nixon M, Carter J, Cunado D, Huang P, Stevenage S. Automatic gait recognition. In: Proceedings of BIOMETRICS Personal Identification in Networked Society, 1999. 231~249
  • 5Niyogi S, Adelson E. Analyzing and recognizing walking figures in XYT. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, USA, 1994. 469~474
  • 6Cunado D, Nixon M, Carter J. Using gait as a biometric, via phase-weighted magnitude spectra. In: Proceedings of International Conference on Audio- and Video-based Biometric Person Authentication, Crans-Montana, Switzerland, 1997. 95~102
  • 7Little J, Boyd J. Recognizing people by their gait: The shape of motion. Journal of Computer Vision Research, 1998, 1 (2): 2~32
  • 8Murase H, Sakai R. Moving object recognition in eigenspace representation: Gait analysis and lip reading. Pattern Recognition Letters, 1996, 17: 155~162
  • 9Huang P, Harris C, Nixon M. Human gait recognition in canonical space using temporal templates. Vision Image and Signal Processing, 1999, 146 (2): 93~100
  • 10Shutler J, Nixon M, Harris C. Statistical gait recognition via temporal moments. In: Proceedings of IEEE Southwest Symposium on Image Analysis and Interpretation, Austin, Texas, 2000. 291~295

共引文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部