期刊文献+

融合码本和纹理的双层视频背景建模方法 被引量:6

A two-layers background modeling method based on codebook and texture
下载PDF
导出
摘要 基于背景建模的运动目标分割是智能视频监控的重要任务,模型的质量直接影响到检测、跟踪、识别等运动分析的准确性.当前的建模方法多是单层的,忽略了像素特征在时域和空域上的联系,模型描述不够准确,对于背景扰动、全局光照变化及复杂的室内外场景等多种情况鲁棒性不强,导致了分割中出现空洞和噪声点.针对这些问题提出了一种双层建模的方法,在第一层提取时域上的像素亮度特征采用码本建模,第二层提取邻域纹理特征采用基于中心对称的局部二值模式建模.实验证明该方法在用于运动分割时,比常用方法具有更好的准确性和鲁棒性. Moving object detection using a background model is one of the most important targets for video surveillance.The quality of the model affects the accuracy of object detection,tracking and recognition.Most of the traditional methods are single layered,with no consideration of the change in brightness both spatially and temporally.The model is therefore not accurate enough to handle difficulties such as waving trees,light switching,complex background and there will be holes and noise when segmentation is done.A two-layer method of spatio-temporal background modeling is described.A modeling algorithm based on codebook(CB) was presented in the pixel-level layer,while a texture-based algorithm using center-symmetric local binary pattern(CSLBP) in the region-level layer.Experimental results on video sequences demonstrate that the method can process movement segmentation effectively.
作者 李峰 周荷琴
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2012年第2期99-105,共7页 JUSTC
基金 安徽省科技攻关项目(09010306042)资助
关键词 背景建模 目标分割 码本 中心对称的局部二值模式 background modeling objects segmentation codebook CSLBP
  • 相关文献

参考文献12

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2Piccardi M. Background subtraction techniques: a review [ C ]//IEEE International Conference on Systems, Man and Cybernetics. Netherlands: IEEEPress, 2004, 4:3 099-3 104.
  • 3Toyama K, Krumm J, Brnmitt B, et al. Wallflower: Principles and practice of background maintenance [C]// Proceedings of International Conference on Computer Vision. Kerkyra, Greece: IEEE Press, 1999, 1: 255-261.
  • 4Stauffer C, Grimson W E L. Adaptive background mixture models for real time tracking[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: IEEE Computer Society, 1999, 2:246-252.
  • 5Elgammal A, Duraiswami R, Harwood D, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [ J ]. Proceedings of the IEEE, 2002, 90(7): 1 151-1 163.
  • 6Kim K, Chalidabhongse T H, Harwood D, et al. Real-time foreground-background segmentation using codebook model[J]. Real-Time Imaging, 2005, 11(3) : 172-185.
  • 7Heikkila M, Pietikainen M. A texture-based method for modeling the background and detection moving objects[J]. IEEE Transaction on Pattern and Machine Intelligence, 2006, 28(4): 657-662.
  • 8Chen Y T, Chen C S, Huang C R, et al. Efficient hierarchical method for background subtraction[J].Pattern Recognition, 2007, 40(10): 2 706-2 715.
  • 9Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987.
  • 10Heikkila M, Pietikfiinen M, Schmid C. Description of interest regions with center-symmetric local binary patterns [C]//Proceedings of 5th Conference on Computer Vision, Graphics and Image Processing. Madurai, India:I EEE Press, 2006, 4338: 58-59.

二级参考文献47

  • 1Kilger M.A shadow handler in a video-based real-time traffic monitoring system[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Palm Springs,CA,USA,1992:1060 ~ 1066.
  • 2Elgammal A.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,90 (7):1151 ~ 1163.
  • 3Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[A].In:Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence[C],Rhode Island,USA,1997:175 ~ 181.
  • 4Grimson W,Stauffer C,Romano R.Using adaptive tracking to classify and monitor activities in a site[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA,USA,1998:22 ~29.
  • 5Stauffer C,Grimson W.Adaptive background mixture models for realtime tracking[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,USA,1999,2:246~252.
  • 6Gao X,Boult T,Coetzee F,et al.Error analysis of background adaption[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Isand,SC,USA,2000:503 ~510.
  • 7Power P W,Schoonees J A.Understanding background mixture models for foreground segmentation[A].In:Proceedings of Image and Vision Computing[C],Auckland,New Zealand,2002:267 ~271.
  • 8Lee D S,Hull J,Erol B.A Bayesian framework for gaussian mixture background modeling[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,Spain,2003:973 ~ 976.
  • 9Rittscher J,Kato J,Joga S,et al.A probabilistic background model for tracking[A].In:Proceedings of European Conference on Computer Vision[C],Dublin,Ireland,2000,2:336 ~ 350.
  • 10Stenger B,Ramesh V,Paragios N,et al.Topology free hidden markov models:Application to background modeling[A].In:Proceedings of IEEE International Conference on Computer Vision[C],Vancouver,BC,Canada,2001,1:294 ~301.

共引文献168

同被引文献50

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部