摘要
研究了一类具有非光滑局部Lipschitz位势(半变分不等式)的非线性特征值问题其中1<p<∞,Ω R^N是有界区域.目的是把最近的超线性(即p=2)问题的非平凡解存在性和连续性结果推广到一般情况(即1<p<∞).不仅推广了Miyagaki and Souto研究工作[Superlinear Problems without Ambrosetti and Rabinowitz GrowthCondition,Jour.Diff.Equa.,245(2008)3628-3638],同时也推广了Schechter和Zou的研究工作[Superlinear Problems,Pacific J.Math.,214(2004)145-160].本文使用的方法基于局部Lipschitz函数的非光滑临界点理论.
We consider a kind of nonlinear eigenvalue problem driven by the p-laplacian with a nonsmooth locally Lipschitz potential (hemivariational inequality), that is, {-div(||△x(z)||R^N^p-2△x(z))∈λδj(z,x(z)),z∈Ω x(z)=0,z∈δΩ,where 1〈p〈∞,Ω R^n
is a bounded domain. The purpose of this paper is to extend earlier existence and continuation results of nontrivial solutions of the problem in the superline case (i.e., p = 2) to the general case (i.e., 1 〈 p 〈 ∞). We not only extend the existence results of nontrivial solutions for almost every parameter A due to Miyagaki and Souto [Superlinear Problems without Ambrosetti and Rabinowitz Growth Condition, Jour. Diff. Equa., 245 (2008) 3628-3638], but also extend the existence results of nontrivial solutions for every parameter λ due to Schechter and Zou [Superlincar Problems, Pacific Y. Math., 214 (2004) 145-160] to the general case when 1 〈 p 〈 ∞. Our approach is based on the non-smooth critical point theory for locally Lipschitz functions.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2012年第2期207-218,共12页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(11126286
10971043
11001063)
中央高校基本科研业务费专项资金(20111134)
中国博士后基金(20110491032)
黑龙江省杰出青年基金(JC200810)及省自然科学基金(A200803)