期刊文献+

由p-Laplacian算子导出的半变分不等式的特征值问题

Eigenvalue Problems for Hemivariational Inequality Driven by the p-Laplacian
原文传递
导出
摘要 研究了一类具有非光滑局部Lipschitz位势(半变分不等式)的非线性特征值问题其中1<p<∞,Ω R^N是有界区域.目的是把最近的超线性(即p=2)问题的非平凡解存在性和连续性结果推广到一般情况(即1<p<∞).不仅推广了Miyagaki and Souto研究工作[Superlinear Problems without Ambrosetti and Rabinowitz GrowthCondition,Jour.Diff.Equa.,245(2008)3628-3638],同时也推广了Schechter和Zou的研究工作[Superlinear Problems,Pacific J.Math.,214(2004)145-160].本文使用的方法基于局部Lipschitz函数的非光滑临界点理论. We consider a kind of nonlinear eigenvalue problem driven by the p-laplacian with a nonsmooth locally Lipschitz potential (hemivariational inequality), that is, {-div(||△x(z)||R^N^p-2△x(z))∈λδj(z,x(z)),z∈Ω x(z)=0,z∈δΩ,where 1〈p〈∞,Ω R^n is a bounded domain. The purpose of this paper is to extend earlier existence and continuation results of nontrivial solutions of the problem in the superline case (i.e., p = 2) to the general case (i.e., 1 〈 p 〈 ∞). We not only extend the existence results of nontrivial solutions for almost every parameter A due to Miyagaki and Souto [Superlinear Problems without Ambrosetti and Rabinowitz Growth Condition, Jour. Diff. Equa., 245 (2008) 3628-3638], but also extend the existence results of nontrivial solutions for every parameter λ due to Schechter and Zou [Superlincar Problems, Pacific Y. Math., 214 (2004) 145-160] to the general case when 1 〈 p 〈 ∞. Our approach is based on the non-smooth critical point theory for locally Lipschitz functions.
作者 葛斌 周庆梅
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2012年第2期207-218,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(11126286 10971043 11001063) 中央高校基本科研业务费专项资金(20111134) 中国博士后基金(20110491032) 黑龙江省杰出青年基金(JC200810)及省自然科学基金(A200803)
关键词 P-LAPLACIAN 非线性特征值问题 超线性问题 变分方法 p-Laplacian nonlinear eigenvalue problem superlinear problems varia-tional method
  • 相关文献

参考文献17

  • 1Barletta G., Marano S., Some remarks on the critical point theory for locally Lipschitz functions, Glasgow Math. J., 2003, 45:131 141.
  • 2Motreanu D., Panagiotopoulos P., A minimax approach to the eigenvalue problem of hemivariational in- equalities and applications, Appl. Anal., 1995, 58:53 76.
  • 3Goeleven D., Motreanu D., Panagiotopoulos P., Eigenvalue problems for variational-hemivariational inequalities at resonance, Nonlinear Anal., 1998, 83:161 180.
  • 4Gasinski L., Papageorgiou N. S., Existence of solutions and of multiple solutions for eigenvalue problems of hemivariational inequalities, Adv. Math. Sci. Appl., 2001, 11: 437-464.
  • 5Gasinski L., Papageorgiou N. S., Multiple solutions for nonlinear hemivariational inequalities near resonance, Funkcial. Ekvac., 2000, 43: 271-284.
  • 6Goeleven D., Motreanu D., A degree theoretic approach for the study of eigenvalue problems in variational- hemivariational inequalities, Differential Integral Equations, 1997, 10: 893-904.
  • 7Miyagaki O. H., Souto M. A. S., Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 2008, 245: 3628-3638.
  • 8Schechter M., Zou W., Superlinear problems, Pacific J. Math., 2004, 214: 145-160.
  • 9Chen Z. C., Luo T., The eigenvalue problem for p-Laplacian-Like equations, Acta Mathematica Sinica, Chinese Series, 2003, 46(4): 631-638.
  • 10An L., Eigenvalue problems for the p-Laplacian , Nonlinear Analysis, 2006, 64:1057 1099.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部