期刊文献+

两平面凸域的对称混合等周不等式 被引量:19

The Symmetric Mixed Isoperimetric Inequality of Two Planar Convex Domains
原文传递
导出
摘要 设K_k(k=i,j)为欧氏平面R^2中面积为A_k,周长为P_k的域,它们的对称混合等周亏格(symmetric mixed isoperimetric deficit)为σ(K_i,K_j)=P_i^2P_j^2-16π~2A_iA_j.根据周家足,任德麟(2010)和Zhou,Yue(2009)中的思想,用积分几何方法,得到了两平面凸域的Bonnesen型对称混合不等式及对称混合等周不等式,给出了两域的对称混合等周亏格的一个上界估计.还得到了两平面凸域的离散Bonnesen型对称混合不等式及两凸域的对称混合等周亏格的一个上界估计,并应用这些对称混合(等周)不等式估计第二类完全椭圆积分. Let Kk (k = i,j) be domain of the area Ak, and of the perimeter Pk, respectively. The symmetric mixed isoperimetric deficit of h'i and Kj is defined σ(Ki,Kj)=Pi^2Pj^2-16π^2AiAj. We follow the ideas of Zhou, Ren (2010) and Zhou, Yue (2009) and obtain some Bonnesen-style symmetric mixed inequalities and the sym- metric mixed isoperimetric inequality by the method of integral geometry. We also ob- tain some symmetric mixed isoperimetric upper limits. Some discrete Bonnesen-style symmetric mixed inequalities and one upper limit of the discrete symmetric mixed isoperimetric deficit for two domains are obtained. Finally we apply these symmetric mixed (isoperimetric) inequalities to estimate the complete elliptic integral of second class.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2012年第2期355-362,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10971167)
关键词 对称混合等周亏格 对称混合等周不等式 Bonnesen型对称混合不等式 The symmetric mixed isoperimetric deficit the symmetric mixed isoperi-metric inequality the Bonnesen-style symmetric mixed inequality
  • 相关文献

参考文献1

二级参考文献22

  • 1Ralph Howard.Blaschke’s rolling theorem for manifolds?with boundary[J]. manuscripta mathematica . 1999 (4)
  • 2Bottema O.Eine obere Grenze fur das isoperimetrische Defizit ebener Kurven. Nederl Akad Wetensch Proc . 1933
  • 3Grinberg E,Ren D,Zhou J.The symmetric isoperimetric deficit and the containment problem in a plane of constant curvature. .
  • 4Zhou J.Tne Willmore inequalities for submanifolds. Canadian Mathematical Bulletin . 2007
  • 5Zhou J,Chen F.The Bonnesen-type inequality in a plane of constant cuvature. Journal of the Korean Mathematical Society . 2007
  • 6Zhou J,Xia Y,Zeng C.Some new Bonnesen-style inequalities. Journal of the Korean Mathematical Society .
  • 7Chou S C,Gao X S,Zhang J Z.Machine Proofs in Geometry. . 1994
  • 8Santalo LA.Integral Geometry and Geometric Probability (Encyclopedia of mathematics and its applications ; v1 : Section, Probability). . 1976
  • 9W. Blaschke.Kreis und Kugel. . 1956
  • 10Burago,Y. D.,Zalgaller,V. A. Geometric Inequalities (Grundleheren Math. Wiss., Bd. 285) . 1988

共引文献16

同被引文献86

  • 1孙国臣,张会宾.关于等周问题的探索[J].内蒙古民族大学学报(自然科学版),1998,13(2):97-99. 被引量:1
  • 2钮鹏程,任健.Grushin平面上的Brunn-Minkowski不等式和等周不等式[J].西南民族大学学报(自然科学版),2005,31(6):839-842. 被引量:1
  • 3Bonnesen T. Les problems des isoprimtres et des is6piphanes[M]. Paris: Gauthier-Villars, 1929.
  • 4Bonnesen T, Fenchel W. Theorie der konvexen KSrper [M]. Berlin, New York: Amer. Math. Society, 1974.
  • 5任德鳞.积分几何学引论[M].上海:上海科学技术出版社,1988.
  • 6Osserman R. The isoperimetric inequality[J]. Bull. Amer. Math. Soc., 1978, 84: 1182- 1238.
  • 7Osserman R. Bonnesen-style isoperimetric inequality[J]. Amer. Math. Monthly, 1979, 86:1 29.
  • 8Zhou J, Xia Y, Zeng C. Some new Bonnesen-style inequalities[J]. J. Korean Math. Soc., 2011, 48(2) 421 - 430.
  • 9Santal5 L. Integral geometry and geometric probability [M]. Reading, Mass: Addison-Wesley, 1976.
  • 10Bonnesen T. Les problems des isoprimtres et des ispiphanes [M]. Paris: Gauthier-Villars, 1929.

引证文献19

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部