期刊文献+

沪深300指数跳的逐点检验及动态分析 被引量:7

Jump Test on Time Points and Jump Dynamics:Empirical Study on CSI 300
原文传递
导出
摘要 作为金融衍生产品标的,沪深300指数是否存在跳以及跳服从怎样的动态规律对资产定价和风险管理都十分重要。本文提出新的时点方差估计方法,构造渐进性质更好的跳检验统计量,以此对沪深300指数5分钟数据进行时点跳检验,在此基础上对跳的动态变化进行分析。实证结果表明,沪深300指数存在跳,跳发生次数服从Poisson过程,但跳发生概率随时间变化,具有时变性;跳幅分布具有厚尾性并向右偏斜,分布随时间发生变化,不服从同分布假设。本文的研究结果为相关研究提供了基础性实证结论。 As underlying of financial derivatives in China financial market, the jumps and their dynamic play import role in asset pricing and risk management. In this paper, the author builds up a new estimation of spot variance based on threshold bipower variation and establishes an asymptotically more efficent jump test statistics. With this new test jump statistics, jump test and dynamic analysis based on five-minutes data of CSI300 are conducted. The empirical evidence shows that jumps in CSI 300 are ubiquitous and driven by a compound Poisson process with time-varing density and time-varing jump size, which implies that jump size is not i. i. d.. The empirical results in this paper can be foundamental for relevent studies.
作者 沈根祥
出处 《中国管理科学》 CSSCI 北大核心 2012年第1期43-50,共8页 Chinese Journal of Management Science
基金 上海财经大学"211工程"四期重点学科建设资助项目
关键词 POISSON跳 门限双幂变差 时点方差 跳动态 jump threshold bipower variation spot variance jump dynamics
  • 相关文献

参考文献13

  • 1Johannes, M.. The statistical and economic role of jumps in interest rates[J]. Journal of Finance, 2004, 59:227--60.
  • 2Barndorff-Nielsen,O. E. , Shephard,N.. Power and bipower variation with stochastic volatility and jumps[J]. Journal of Financial Econometrics, 2004, 2 (1) : 1 -- 37.
  • 3Barndorff-Nielsen, O. E. , Shephard, N.. Econometrics of testing for jumps in financial economics using bipower variation [J]. Journal of Financial Econometrics, 2006, 4(1) :1-30.
  • 4Lee,S. , Mykland,P. A.. Jumps in financial markets: A new nonparametric test and jump dynamics[J]. Review of Financial Studies, 2008, 21(6):2535--2561.
  • 5Corsi, F. , Pirino, D. , Reno, R.. Threshold bipower variation and the impact of jumps on volatility [J].Journal of Ecomometric, 2010, 159 : 276-- 288.
  • 6谢赤,邓艺颖.描述利率动态行为的GARCH-JUMP模型[J].数量经济技术经济研究,2003,20(3):74-77. 被引量:7
  • 7童汉飞,刘宏伟.中国股市收益率与波动率跳跃性特征的实证分析[J].南方经济,2006,35(5):61-72. 被引量:15
  • 8陈浪南,孙坚强.股票市场资产收益的跳跃行为研究[J].经济研究,2010,45(4):54-66. 被引量:57
  • 9沈根祥.沪深300指数日内跳的Hausman检验[J].数理统计与管理,2010,29(4):713-718. 被引量:6
  • 10Back,K.. Asset prices for general processes[J]. Journal of Mathematical Economics, 1991, 20:317--395.

二级参考文献50

  • 1Akgiray, V., and Bonth, G. G., 1988, "Mixed Jump-Diffusion Process Modeling of Exchauge Rate Movements", Review of Economics and Statistics, 70, 631-637.
  • 2Bates, D. S. and Craine. R., 1998. "Valuirtg the Futures Market Clearinghouse's Default Exposure During the 1987 Crash", Journal of Money, Credit. and Banking, 31. 248-272.
  • 3Bates, D. S.. 1991, "The Crash of '87: Was it Expected? The Evidence From the Options Markets", Journal of Finance, 46, 1009- 1044.
  • 4Bekaert, G., and Gray, S. F., 1998, "Target Zones and Exchange Rates: An Empirical Investigation", Journal of International Economics, 45, 1-35.
  • 5Chan, W. H., and Maheu, J. M., 2002, "Conditional Jump Dynamics in Stock Market Returns", Journal of Business & Economic Statistics, 20, 377-389.
  • 6Chernov, M., Gallant, A. R., Ghysels, E., and Tauehen, G., 1999, "A New Class of Stochastic Volatility Models With Jumps: Theory and Estimation", Working paper.
  • 7Daal, E., Naka, A., and Yu, J. S., 2007, "Volatility Clustering, Leverage Effects, and Jump Dynamics in the US and Emerging Asian Equity Markets", Journal of Banking and Finance, 31, 2751-2769.
  • 8Daal, E., and Yu, J. S., 2005, "A Comparison of Mixed GARCH-Jump Models with Skewed t-Distribution for Asset Returns", Working Paper.
  • 9Das, S. R., 1998, "Poisson-Gaussian Processes and the Bond Market", Working paper.
  • 10Duan, J., Ritchken, P., and Sun, Z., 2005, "Jump Starting GARCH: Pricing and Hedging Options with Jumps in Returns and Volatilities", Working Paper.

共引文献76

同被引文献73

  • 1徐正国,张世英.调整"已实现"波动率与GARCH及SV模型对波动的预测能力的比较研究[J].系统工程,2004,22(8):60-63. 被引量:51
  • 2李胜歌,张世英.“已实现”双幂次变差与多幂次变差的有效性分析[J].系统工程学报,2007,22(3):280-286. 被引量:18
  • 3魏宇,余怒涛.中国股票市场的波动率预测模型及其SPA检验[J].金融研究,2007(07A):138-150. 被引量:43
  • 4Andersen T. G, Bollerslev T. , Diebold F. X. and Labys P. , 2001, The Distribution of Realized Ew-change Rate Volatility [J], Journal of American Statistical Association, 96, 42-55.
  • 5Andersen T. G, Bollerslev T. , Diebold F.X. and Labys P. , 2003, Modeling and Forecasting Real-ized Volatility [J], Economerica, 71, 570-625.
  • 6Andersen T. G, Bollerslev T. and Diebold F. X. , 2007, Roughing it Up : Including Jump Compo-nents in the Measurement, Modeling, and Forecasting of Return Volatility [J], The Review of Economics and Statistics, 89, 701-720.
  • 7Andersen T. G, Bollerslev T. and Diebold F. X. , 2010, Parametric and Nonparametric Measure-ment of Volatility [A], In Hansen L. P. , Ait-Sahalia Y. , Handbook of Financial Econometrics [M], Elsevier Science, NewYork.
  • 8Back K. , 1991, Asset Prices for General Processes [J], Journal of Mathematical Economics, 20,317-395.
  • 9Bandi M., Reno R., 2012, Time-varying Leverage Effects [J], Journal of Econometrics, 169,94-113.
  • 10Barndorff-Nielsen O. E. , Shephard N. , 2004, Power and Bipower Variation zoith Stochastic Vola-tility and Jumps [J], Journal of Financial Econometrics, 2, 1-37.

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部