期刊文献+

社交网站交互模式分析 被引量:6

Analysis of Interaction Pattern in Social Networking Sites
下载PDF
导出
摘要 随着网络技术的快速发展,社交网站为广大用户提供了一种全新的交流和信息分享的平台,深受网友的欢迎。本文探讨了社交网站的交互模式,以测试来自传统物理世界的成本、互惠性、三方闭合、同质性等理论应用在虚拟世界是否有效为重点。尽管结果显示社交网站交互结构和属性变化与现实世界中的社会网络的结构有所不同,但他们在一定程度上影响了社交网站中用户交互的形成。毫无疑问,这些发现对于需要理解社交网站发展过程的研究者和实践者有重要的启示作用。 With the rapid development of the Internet technology, social networking site get more and more popular as they provide customers a novel communication and information-sharing platform. This paper examines how users interact in social networking sites and futher explore whether the traditional theories on cost, reciprocal, triad closure and homogeneity in the physical world would be still valid in the virtual world. Although the results show that the structural effects and demographic variables in social networking site are different from ones in the real world, they are to a certain extent affect the formation of user networks and their interactions in online social networks. These findings have important implications for researcher and practitioners who need to understand social processes well to develop and sustain healthy and satisfactory social network site.
出处 《情报学报》 CSSCI 北大核心 2012年第2期213-224,共12页 Journal of the China Society for Scientific and Technical Information
基金 基金资助:国家自然科学基金(NO.70371035) 江苏省高校自然科学基金(NO.07KJB310075) 南京航空航天大学引进人才科研基金(S0951-094).
关键词 社交网站 网络结构 数据挖掘 社会网络分析 social networking site, network structure, data mining, social network analysis
  • 相关文献

参考文献55

  • 1Chen W,Wang Y J,Yang S Y.Efficient influence maximi-zation in social networks[C] // Proceedings of 15th ACM SIGKDD international conference on Knowledge discovery and data mining.New York:ACM,2009:199-208.
  • 2Kmepe D,Kleinberg J,Tardos E.Maximizing the spread of influence through a social network[C] // Proceedings of the 9th ACM SIGKDD International Conference on Knowledge discovery and data mining.New York:ACM,2003:137-146.
  • 3Huang Y.Supporting meaningful social networks[D].University of Southampton,2009.
  • 4Wilson C,Boe B,Sala A,et al.User interactions in social networks and their implications[C] // Proceedings of the 4th ACM European conference on Computer systems.New York:ACM,2009:205-218.
  • 5Gilbert E,Karahalios K.Predicting tie strength with social media[C] // Proceedings of the 27th international conference on Human factors in computing systems.New York:ACM,2009:211-220.
  • 6Xiang R,Neville J,Rogati M.Modeling relationship strength in online social networks[C] // Proceedings of the 19th international conference on World wide Web.New York:ACM.2010:981-990.
  • 7Kah I,Neville J.Using transactiona information to predict link strength in online social networks[C] // Proceedings of the 3rd international conference on Weblogs and social media.USA:AAAI Press,2009:55-63.
  • 8Kossinets G,Watts D J.Empirical analysis of an evolving social network.Science[J].Science,2006(6),311:88-90.
  • 9Wernicke S,Rasche F.Fanmond:a tool for fast network motif detection[J].Bioinformatics,2006,22(6):1152-1153.
  • 10Lex R,Kovacs B,Vicsek A.When do email networks correspond to social networks?[OL].[2010-12-20].www.asna.ch/fileadmin/user_upload/2010/Papers/Lex-et-al_paper.pdf.

同被引文献89

引证文献6

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部