期刊文献+

同伦扰动法求解分数阶非线性扩散方程近似解 被引量:3

Approximate solutions of nonlinear diffusion equation by using homotopy perturbation method
下载PDF
导出
摘要 将Caputo分数阶微分算子引入到带有初值条件的扩散方程中,建立了时空分数阶方程。利用同伦扰动法并借助于Mathematica软件的符号计算功能,求解了分数阶非线性扩散方程的近似解,整数阶方程的结果作为特例被包含。 Caputo fractional operator is introduced in the diffusion equation with initial condition, and the time-space fractional equa- tion is established. Approximate solution of the fractional nonlinear diffusion equation is obtained by using homotopy perturbation method and mathematica symbols calculation software, and the integer equation is the special case of this fractional equation.
作者 刘艳芹
机构地区 德州学院数学系
出处 《计算机工程与应用》 CSCD 2012年第6期28-29,共2页 Computer Engineering and Applications
基金 山东省自然科学基金(No.Y2007A06 ZR2010Al019) 中国博士后科学基金(No.20100470783)
关键词 分数阶微积分 分数阶扩散方程 同伦扰动法 近似解 fractional calculus fractional diffusion equation homotopy perturbation method approximate solution
  • 相关文献

参考文献11

  • 1Podlubny I.Fractional differential equations[M].New York:USA Academic Press, 1999:41-117.
  • 2Hilfer R.Applications of fractional calculus in physics[M].Singapore:World Scientific, 2000.
  • 3Metzler R, Klafter J.The random walk's guide to anomalous diffusion:a fractional dynamics approach[J].Physics Reports,2000, 339( 1 ) : 1-77.
  • 4Jiang X Y, Xu M Y.Analysis of fractional anomalous diffusion caused by an instantaneous point source in disordered fractal media[J].Intemational Journal of Non-Linear Mechanics, 2006,41 (1):156-165.
  • 5Wang S W,Xu M Y,Axial couette flow of two kinds of fractional viscoelastic fluids in an annulus[J].Nonlinear Analysis: Real World Applications ,2009,10(2) : 1087-1096.
  • 6Ma J H, Liu Y Q.Exact solutions for a generalized nonlinear fractional Fokker-Planck equation[J].Nonlinear Analysis: Real World Applications, 2010,11 ( 1 ) : 515-521.
  • 7LIU Yan-Qin,MA Jun-Hai.Exact Solutions of a Generalized Multi-Fractional Nonlinear Diffusion Equation in Radical Symmetry[J].Communications in Theoretical Physics,2009,52(11):857-861. 被引量:9
  • 8He J H.Homotopy perturbation technique[J].Computer Methods in Applied Mechanics and Engineering, 1999,178 (3/4) : 257-262.
  • 9He J H.Homotopy perturbation method:a new nonlinear analytical technique[J].Applied Mathematics and Computation,2003,135 (1):73-79.
  • 10Liu Y Q,Xin B G.Numerical solutions of a fractional predatorprey system[J].Advances in Difference Equations, 2011, ID : 190475.

二级参考文献16

  • 1C. Tsallis and E.K. Lenzi, Chem. Phys. 284 (2002) 341, Erratum, ibid. 287 (2002) 295.
  • 2E.K. Lenzi, G.A. Mendes, R.S. Mendes, L.R. da Silva, and L.S. Lucena, Phys. Rev. E 67 (2003) 051109.
  • 3R. Metzler, E. barkai, and J. Klafter, Physica A 266 (1999) 343.
  • 4M.M. Meeschaert, D.A. Benson, and B. Baumer, Phys. Rev. E 59 (1999) 5026.
  • 5B.N.N. Achar and J.W. Hanneken, J. Mol. Liq. 114 (2004) 147.
  • 6J.P. Pascal and H. Pascal, Physica A 208 (1994) 351.
  • 7J. Stephenson, Physica A 222 (1995) 234.
  • 8A. Schot, M.K. Lenzi, and L.R. Evangelista, Phys. Lett. A 366 (2007) 346.
  • 9M. Bologna, C. Tsallis, and P. Grigolini, Phys. Rev. E 6 (2000) 2213.
  • 10R.S. Zola, M.K. Lenzi, L.R. Evangelista, E.K. Lenzi, L.S. Lucena, and L.R. da Silva, Phys. Lett. A 372 (2008) 2359.

共引文献8

同被引文献33

  • 1Sabatier J,Agrawal O P,Tenreiro Machado J A.Advances in fractional calculus:theoretical developments and applications in physics and engineering[M].[S.l.]:Springer,2007.
  • 2Baleanu D,Diethelm K,Scalas E,et al.Fractional calculus models and numerical methods in series on complexity,nonlinearity and chaos[C].World Scientific,Singapore,2012.
  • 3Liu Y Q,Xin B G.Numerical solutions of a fractional predator-prey system[J].Advances in Difference Equations,2011,190475.
  • 4Ma J H,Liu Y Q.Exact solutions for a generalized nonlinear fractional Fokker-Planck equation[J].Nonlinear Analysis:Real World Applications,2010,11(1):515-521.
  • 5Liu J C,Hou G L.Numerical solutions of the space-and time-fractional coupled Burgers equations by generalized differential transform method[J].Applied Mathematics and Computation,2011,217(16):7001-7008.
  • 6Erturk V S,Yildirim A,Momanic S.The differential transform method and Pade approximants for a fractional population growth model[J].International Journal of Numerical Methods for Heat&Fluid Flow,2012,22(6/7):791-802.
  • 7He J H.Homotopy perturbation method:a new nonlinear analytical technique[J].Applied Mathematics and Computation,2003,135(1):73-79.
  • 8Yildirim A.Application of the homotopy perturbation method for the Fokker-Planck equation[J].International Journal for Numerical Methods in Biomedical Engineering,2010,26(9):1144-1154.
  • 9Jafari H,Nazari M,Baleanu D,et al.A new approach for solving a system of fractional partial differential equations[J].Computers and Mathematics with Applications,2013,66(5):838-843.
  • 10Yan L M.Numerical solutions of fractional Fokker-Planck equations using iterative Laplace transform method[J].Abstract and Applied Analysis,2013,465160.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部