期刊文献+

一种新的蛋白质亚细胞定位预测方法 被引量:1

Novel approach to prediction of protein subcellular localization
下载PDF
导出
摘要 蛋白质亚细胞定位是蛋白质组学基本问题之一。某些类型蛋白质可能存在于两个或两个以上的亚细胞位置,这类蛋白质的亚细胞定位问题更为复杂。分别利用Gene Ontology和伪氨基酸成分法,将一条蛋白质表示为一实值向量;采纳多标记学习中的Ranking思想,计算出一得分向量V,该向量的每一分量的值表示被预测蛋白质属于某个亚细胞位置的概率;利用最近邻算法预测蛋白质所属亚细胞位置的个数n,得分向量V中得分最高的n个分量对应的亚细胞位置即为预测的位置。 A It is one of basic problems of proteomics to identify the subcellular locations of a protein. It makes the problem more complicated that some proteins may simultaneously exist in two or more than two subcellular locations. Gene Ontology and pseudo amino acid composition are respectively employed to represent a protein as a real values vector. The idea of Ranking initiating from multi-label learning community is adopted to compute a score vector V, each component value of which indicates the probability that a protein of the corresponding subcellular location.The nearest neighbor algorithm is then employed to predict the number n of subcellular localization of human proteins. Finally, the n subcellular locations correspondin~ to the too n scores components in Vare assign to the ouerv nrotein.
出处 《计算机工程与应用》 CSCD 2012年第6期126-128,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.60961003) 江西省自然科学基金(No.2010GQS0127)
关键词 蛋白质亚细胞定位 多标记学习 GENE ONTOLOGY 最近邻算法 protein subcellular localization multi-label learning Gene Ontology k-nearest neighbors algorithm
  • 相关文献

参考文献11

  • 1Chou K C, Shen H B.Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization,Biochem[J].Biophys Res Cornmun,2006,347:150-157.
  • 2Chou K C.Prediction of protein cellular attributes using pseudo amino acid composition[J].Proteins : Struct Funct Genet, 2001,43 : 246-255.
  • 3Chou K C, Cai Y D.Using functional domain composition and support vector machines for prediction of protein subcellular location[J].Journal of Biol Chem,2002,277:45765-45769.
  • 4Park K J, Kanehisa M.Prediction of protein subcellular locations by support vector machines using compositions of amino acid and amino acid pairs[J].Bioinformatics,2003,19:1656-1663.
  • 5Zhou G P,Doctor K.Subcellular location prediction of apoptosis proteins[J].Proteins: Struct Funct Genet, 2003,50: 44-48.
  • 6Garg A, Bhasin M, Raghava G P.Support vector machine-based method for subcellular localization of human proteins using amino acid compositions, their order, and similarity search[J].Joumal Biol Chem, 2005,280 : 14427-14432.
  • 7Shen H B,Chou K C.Hum-mPLoc:an ensemble classifier for large- scale human protein subcellular location prediction by incorporating samples with multiple sites[J].Biochem Biophys Res Commun,2007,355 : 1006-1011.
  • 8Ashburner M.Gene ontology: tool for the unification of biology[J]. Nat Genet,2000,25:25-29.
  • 9Shen H B, Chou K C.A top-down approach to enhance the power of predicting human protein subcellular loealization:Hum-mPLoc 2.0[J].Analytical Biochemistry,2009,394(2) :269-274.
  • 10Schaffer A A.Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements[J].Nucleic Acids Res,2001,29:2994-3005.

同被引文献12

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部