期刊文献+

一种用于分类的改进Boosting算法 被引量:3

Improved Boosting algorithm for classification problems
下载PDF
导出
摘要 提出了一种新的Boosting算法LAdaBoost。LAdaBoost算法利用局部错误率更新样本被选用于训练下一个分类器的概率,当对一个新的样本进行分类时,考虑了该样本与其邻域内的每个训练样本的近似度;另外,提出了有效邻域的概念。根据不同的组合方法,得到了两种LAdaBoost算法,即LAdaBoost-1和LAdaBoost-2。在UCI上部分实验数据集的实验结果表明,LAda-Boost算法比AdaBoost和Bagging算法更有效,且鲁棒性更好。 A new Boosting algorithm named LAdaBoost is proposed, which utilizes a local error to update the probability that the instance is selected to be part of next classifier' s training set. When classifying a new instance, the similarity between the instance and each training instance in its neighborhood is taken into account. Furthermore, the concept of effective neighborhood is first given. According to different combination methods, it gets two LAdaBoost algorithms LAdaBoost-1 and LAdaBoost-2. The experimental results on several datasets available from the UCI repository demonstrate that LAdaBoost algorithms are more robust and efficient than AdaBoost and Bagging.
作者 刘凯 王正群
出处 《计算机工程与应用》 CSCD 2012年第6期146-150,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.60875004) 江苏省自然科学基金(No.BK2009184) 江苏省高校自然科学基础研究资助项目(No.07KJB520133)
关键词 机器学习 BAGGING算法 BOOSTING算法 噪声 machine learning Bagging Boosting noise
  • 相关文献

参考文献16

  • 1Kittler J, Hatef M, Duin R, et al.On combining classifies[J].IEEE Trans Pattern Anal Intel, 1998,20(3):226-239.
  • 2Chandra A,Yao X.Evolving hybrid ensembles of learning machines for better generalisation[J].Neurocomputing,2006,69(7/9) : 686-700.
  • 3Tresp V.Committee machines[M]//Hu Y H, Hwang J N.Handhook for Neural Network Signal Processing.Boca Raton: CRC Press, 2001.
  • 4Breiman LBagging predictors[J].Mach Learn, 1996,24(2) : 123-140.
  • 5Freund Y, Schapire R E.A decision-theoretic generalization of online learning and an application to Boosting[J].Comput System Sci, 1997,55(1): 119-139.
  • 6Breiman L.Arcing classifiers[J].Ann Statist, 1998,26 (3) : 801-849.
  • 7Zhou Zhihua,Wu Jianxin, Tang Wei.Ensembling neural networks: Many could be better than all[J].Artif Intell,2002, 137(1/2): 239-263.
  • 8Breiman L,Friedman J, lshenO R, et al.Classification and regression trees [M].New York, USA: Chapman & Hall, 1984.
  • 9Efron B, Tibshirani R J.An introduction to the Bootstrap[M]. New York,USA:Chapman & Hall,1993.
  • 10Schapire R E.The strength of weak leamability[J].Mach Learn, 1990,5(2) : 197-227.

同被引文献24

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部