期刊文献+

基于TCM的KIII模型及其应用研究

Kill for TCM-Based and Research on Its Application
下载PDF
导出
摘要 KⅢ模型在模式识别中表现出良好的性能,但它只能对样本给出与否的预测。TCM是基于算法随机性理论提出的一种分类算法,不仅可以判断出分类类别,同时还可以对每个预测结果给出可靠性的度量。本文把直推式信任机器(TransductiveConfidence Machine,TCM)跟KⅢ模型结合,TCM-KⅢ可以有KⅢ模型的预测能力,还可以给出可靠性度量,丰富了输出信息。文本分类一直是一个活跃的课题,所以本文把TCM-KⅢ应用在分本分类中,实验表明TCM-KⅢ和单一的KⅢ模型预测的准确率相近,但给出了可靠性度量,可以进行有效的风险控制。 The KⅢmodel in pattern recognition show good performance,but it can not give an indication of how "good" the predictions are.TCM is based on algorithmic theory of randomness,not only determine the classification categories,but also can predict the results for each measure of reliability is given.This thesis combined transductive confidence machine with the KⅢmodel,TCM-KⅢnot only has KⅢability to forecast,but also gives the reliability of measurement.TCM-KⅢcan be effective risk control.Text classification has been an active topic,this article applied to the TCM-KIII points of the classification,the results show that TCM-KⅢand single KⅢmodel prediction accuracy is similar,but given the reliability of the measure.
作者 陈南国 张锦
出处 《微计算机信息》 2012年第2期151-152,55,共3页 Control & Automation
关键词 信任机器 文本分类 可信度 TCM text classification credibility
  • 相关文献

参考文献6

  • 1杨丽华,戴齐,杨占华.文本分类技术研究[J].微计算机信息,2006(05X):209-211. 被引量:13
  • 2Kostas Proedrou,Ilia Nouretdinov,Volodya,Alex Gammerman. Transductive Confidence Machines for Pattern Recognition[J].Lec- ture Notes in Computer Science,2002,2430:381-389.
  • 3Ilia Nouretdinov,Vladimir V'yugin, Alex Gammer-man.Trans- ductive Confidence Machine Is Universal[J].Lecture Notes in Com- puter Science,2003,2842:283-297.
  • 4Volodya Vovk,Alaex Gammerman,Graig Saunders. Ma- chine_Learning Applications of Algorithmic Randomness [J]. Clas- sical and Bayesian, 2001, 12(5): 78-86.
  • 5H.J.Chang,Walter. J.Freeman.Biologically modeled noise stabi- lizing neurodynamies for pattern recognition [J].Int. J Bifurcation andChaos, 1998,8(2):321-345.
  • 6邱德红,陈传波,金先级.基于算法随机性理论和奇异描述的置信学习机器[J].计算机研究与发展,2004,41(9):1586-1592. 被引量:10

二级参考文献21

  • 1张先飞,李弼程,刘安斐.基于改进KNFL算法的海量文本分类研究[J].微计算机信息,2005,21(11S):159-160. 被引量:4
  • 2X F Lin, X Q Ding, M Chen, et al. Adaptive confidence transform based classifier combination for Chinese character recognition. Pattern Recognition Letters, 1998, 19(10): 975~988
  • 3T K Ho, J J Hull, S N Srihari. Decision combination in multiple classifier systems. IEEE Trans on Pattern Analysis and Machine Intelligence, 1994, 16(1): 66~75
  • 4A Gelman, J B Carlin, H S Stern, et al. Bayesian Data Analysis. London: Chapman & Hall, 1995
  • 5T Melluish, C Saunders, I Nouretdinov, et al. Comparing the Bayes and typicalness frameworks. The 12th European Conf on Machine Learning/5th European Conf on Principles and Practice of Knowledge Discovery in Databases. Freiburg, Germany, 2001
  • 6M D Richard, R P Lippmann. Neural network classifiers estimate Bayesian a posterior probabilities. Neural Computation, 1991, 3(4): 461~483
  • 7C L Liu, M Nakagawa. Precise candidate selection for large character set recognition by confidence evaluation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(6): 636~642
  • 8M Li, Paul Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. New York: Springer-Verlag, 1997
  • 9A N Kolmogorov. Three approaches to the quantitative definition of information. Problems Inform Transmission, 1965, 1: 1~7
  • 10V Vovk, A Gammerman, C Saunders. Machine-learning applications of algorithmic randomness. The 16th Int'l Conf on Machine Learning, Bled, Slovenia, 1999

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部